Chinese Journal of Chemical Engineering ›› 2020, Vol. 28 ›› Issue (10): 2555-2565.DOI: 10.1016/j.cjche.2020.04.017
• Catalysis, Kinetics and Reaction Engineering • Previous Articles Next Articles
Mohammad Hossein Sheikh-Mohseni1, Sajjad Sedaghat2, Pirouz Derakhshi3, Aliakbar Safekordi1
Received:
2019-12-28
Revised:
2020-03-28
Online:
2020-12-03
Published:
2020-10-28
Contact:
Sajjad Sedaghat
Mohammad Hossein Sheikh-Mohseni1, Sajjad Sedaghat2, Pirouz Derakhshi3, Aliakbar Safekordi1
通讯作者:
Sajjad Sedaghat
Mohammad Hossein Sheikh-Mohseni, Sajjad Sedaghat, Pirouz Derakhshi, Aliakbar Safekordi. Green bio-synthesis of Ni/montmorillonite nanocomposite using extract of Allium jesdianum as the nano-catalyst for electrocatalytic oxidation of methanol[J]. Chinese Journal of Chemical Engineering, 2020, 28(10): 2555-2565.
Mohammad Hossein Sheikh-Mohseni, Sajjad Sedaghat, Pirouz Derakhshi, Aliakbar Safekordi. Green bio-synthesis of Ni/montmorillonite nanocomposite using extract of Allium jesdianum as the nano-catalyst for electrocatalytic oxidation of methanol[J]. 中国化学工程学报, 2020, 28(10): 2555-2565.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2020.04.017
[1] A.L. Hicks, Using multi criteria decision analysis to evaluate nanotechnology:nAg enabled textiles as a case study, Environ. Sci. Nano 8(2017) 1595-1764. [2] P. Mulvaney, Nanoscience vs nanotechnology-defining the field, ACS Nano 9(3) (2015) 2215-2217. [3] S. Omidi, S. Sedaghat, K. Tahvildari, P. Derakhshi, F. Motiee, Biosynthesis of silver nanocomposite with Tarragon leaf extract and assessment of antibacterial activity, J. Nanostructure Chem. 8(2) (2018) 171-178. [4] S. Ahmed, S.A. Annu, S. Chaudhry, Ikram, a review on biogenic synthesis of ZnO nanoparticles using plant extracts and microbes:A prospect towards green chemistry, J. Photochem. Photobiol. B:Biology 166(2017) 272-284. [5] S. Ahmed, M. Ahmad, B.L. Swami, S. Ikram, A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications:A green expertise, J. Adv. Res. 7(2016) 17-28. [6] P. Jamdagni, P. Khatri, J.S. Rana, Biogenic synthesis of silver nanoparticles from leaf extract of Elettaria cardamomum and their antifungal activity against phytopathogens, Adv. Mater. Proc 3(3) (2018) 129-135. [7] S. Alex, A. Tiwari, Functionalized gold nanoparticles:Synthesis, properties and applications-a review, J. Nanosci. Nanotechnol. 15(3) (2015) 1869-1894. [8] U.S. Tayade, A.U. Borse, J.S. Meshram, First report on Butea monosperma flower extract based nickel nanoparticles green synthesis and characterization, IJSRSET 4(3) (2018) 43-49. [9] S. Sedaghat, S. Omidi, Batch process biosynthesis of silver nanoparticles using Equisetum arvense, bioinspired, Bioinspir. Biomin. Nan 8(3) (2019) 190-197. [10] S. Bishnoi, A. Kumar, R. Selvaraj, Facile synthesis of magnetic iron oxide nanoparticles using inedible Cynometra ramiflora fruit extract waste and their photocatalytic degradation of methylene blue dye, Mater. Res. Bull. 97(2018) 121-127. [11] M. Imran Din, A. Rani, Recent advances in the synthesis and stabilization of nickel and nickel oxide nanoparticles:A green adeptness, Int. J. Anal. Chem (2016) 3512145. [12] X. Li, Y. Cao, K. Luo, Y. Sun, J. Xiong, L. Wang, Z. Liu, J. Li, J. Ma, J. Ge, H. Xiao, R. Zare, Highly active enzyme-metal nanohybrids synthesized in protein-polymer conjugates, Nat. Catal 2(2019) 718-725. [13] I. Bibi, S. Kamal, A. Ahmed, M. Iqbal, S. Nouren, K. Jilani, N. Nazar, M. Amir, A. Abbas, S. Ata, F. Majid, Nickel nanoparticle synthesis using Camellia Sinensis as reducing and capping agent:Growth mechanism and photo-catalytic activity evaluation, Int. J. Biol. Macromol. 103(2017) 783-790. [14] X. Weng, M. Guo, F. Luo, Z. Chen, One-step green synthesis of bimetallic Fe/Ni nanoparticles by eucalyptus leaf extract:Biomolecules identification, characterization and catalytic activity, Chem. Eng. J. 308(2017) 904-911. [15] Z. Issaabadi, M. Nasrollahzadeh, M. Sajadi, Green synthesis of the copper nanoparticles supported on bentonite and investigation of its catalytic activity, J. Clean. Prod. 142(2017) 3584-3591. [16] A. Hatamifard, M. Nasrollahzadeh, M. Sajadi, Biosynthesis, characterization and catalytic activity of an Ag/zeolite nanocomposite for base-and ligand-free oxidative hydroxylation of phenylboronic acid and reduction of a variety of dyes at room temperature, New J. Chem. 40(2016) 2501-2513. [17] M. Atarod, M. Nasrollahzadeh, Sajadi, Euphorbia heterophylla leaf extract mediated green synthesis of Ag/TiO2 nanocomposite and investigation of its excellent catalytic activity for reduction of variety of dyes in water, J. Colloid. Interf. Sci 462(2016) 272-279. [18] M. Nasrollahzadeh, S.M. Sajadi, A. Hatamifard, a. Waste chicken eggshell as a natural valuable resource and environmentally benign support for biosynthesis of catalytically active Cu/eggshell, Fe3O4/eggshell and Cu/Fe3O4/eggshell nanocomposites, Appl. Catal. B Environ 191(2016) 209-227. [19] S. Sedaghat, Green biosynthesis of silver functionalized multi-walled carbon nanotubes, using Satureja Hortensis L water extract and its bactericidal activity, J. Nanoanalysis 4(1) (2017) 59-64. [20] S. Sedaghat, Green biosynthesis of silver-montmorillonite Nanocomposite using water extract of Ziziphora tenuior L, Curr. Nanosci. 12(2016) 79-82. [21] R. Govindarasu, S. Somasundaram, P.K. Bhaba, Dynamic studies and control of direct methanol fuel cell, Tago Journal 14(2018) 1075-1085. [22] D. Li, C. Gu1, F. Han, Z. Zhong, W. Xing, catalytic performance of hybrid Pt@ZnO NRs on carbon fibers for methanol electro-oxidation, Chin. J. Chem. Eng. 25(2017) 1871-1876. [23] M.H. Sheikh-Mohseni, A. Nezamzadeh-Ejhieh, Modification of carbon paste electrode with Ni-clinoptilolite nanoparticles for electrocatalytic oxidation of methanol, Electrochim. Acta 147(2014) 572-581. [24] C. Vecchio, D. Sebastian, C. Alegre, A. Salvatore, Carbon-supported Pd and Pd-co cathode catalysts for direct methanol fuel cells (DMFCs) operating with high methanol concentration, J. Electroanal. Chem. 808(1) (2018) 464-473. [25] A.N. Golikand, M.Gh. Maragheh, S. Sedaghat Sherehjini, K.M. Taghi-Ganji, M. Yarib, Carbon-supported Pt particles as a catalyst for Electrooxidation of methanol and cyclic voltammetry studies under acidic conditions, Electroanalysis 18(9) (2006) 911-917. [26] M. Taghi-Moradi, A. Karimi, S. Alidadi, L. Hashemi, In vitro anti-herpes simplex virus activity, antioxidant potential and total phenolic compounds of selected Iranian medicinal plant extracts, Indian J. Tradit. Know, 17(2) (2018) 255-262. [27] M. Vihakas, Flavonoids and Other Phenolic Compounds:Characterization and Interactions with Lepidopteran and Sawfly Larvae, ISBN:978-951-29-59052014. [28] A.F. Likhanov, Identification of inter varietal affinity of raspberry (Rubus idaeus L.) plants on biochemical profiles of phenolic compounds, NULES of Ukraine, 2014. [29] M.L. Neto, K.L. Agra, J. Suassuna, F.E. Jorge, TDDFT calculations and photoacoustic spectroscopy experiments used to identify phenolic acid functional biomolecules in Brazilian tropical fruits in natura, Spectrochimica Acta Part A:Spectrochim. Acta. A 193(2018) 249-257. [30] S. Rai, A.K. Kureel, P.K. Dutta, G.K. Mehrotra, Phenolic compounds-based conjugates from dextran aldehyde andBSA:Preparation, characterization and evaluation of their anti-cancerefficacy for therapeutic applications, Int. J. Biol. Macromol. 110(2018) 425-436. [31] S. Arora, P. Itankar, Extraction, isolation and identification of flavonoid from Chenopodium album aerial parts, J. Tradit. Complement. Med. 8(4) (2018) 476-482. [32] H.P. Spoorthy, S. Satish, N.D. Rekh, Biosynthesis of nickel nanoparticles from Bacteria and evaluation of their biological activity, J. Pharm. Res. 11(5) (2017) 459-463. [33] Ch.J. Pandian, R. Palanivel, S. Dhananasekaran, Green synthesis of nickel nanoparticles using Ocimum sanctum and their application in dye and pollutant adsorption, Chin. J. Chem. Eng. 23(8) (2015) 1307-1315. [34] M.I. Din, A.Gh. Nabi, A. Rani, A. Aihetasham, M. Mukhtar, Single step green synthesis of stable nickel and nickel oxide nanoparticles from Calotropis gigantea:Catalytic and antimicrobial potentials, Environ. Nanotechnol. Monit. Manag 9(2018) 29-36. [35] M.I. Din, A. Rani, Recent advances in the synthesis and stabilization of nickel and nickel oxide nanoparticles:A green adeptness, Int. J. Anal. Chem 1(2016) 1-14. [36] I. Bibi, S. Kamal, A. Ahmed, M. Iqbal, S. Nouren, K. Jilani, N. Nazar, M. Amir, A. Abbas, S. Ata, F. Majid, Nickel nanoparticle synthesis using camellia Sinensis as reducing and capping agent:Growth mechanism and photo-catalytic activity evaluation, Int. J. Biol. Macromol. 103(2017) 783-790. [37] M. Azizi, S. Sedaghat, K. Tahvildari, P. Derakhshi, A. Ghaemi, Synthesis of silver nanoparticles using Peganum harmala extract as a green route, Green Chem. Lett. Rev 10(4) (2017) 420-427. [38] X. Wenga, M. Guo, F. Luo, Z. Chen, One-step green synthesis of bimetallic Fe/Ni nanoparticles by eucalyptus leaf extract:Biomolecules identification, characterization and catalytic activity, Chem. Eng. J. 308(2017) 904-911. [39] A. Liazid, M. Palma, J. Brigui, C.G. Barroso, Investigation on phenolic compounds stability during microwave-assisted extraction, J. Chromatogr. A 1140(2007) 29-34. [40] M. Nasrollahzadeh, S.M. Sajadi, Z. Issaabadi, M. Sajjadi, Chapter 3-biological sources used in green nanotechnology, Interface Science and Technology 28(2019) 81-111. [41] Y. Budipramana, Suprapto, T. Ersam, F. Kurniawan, Synthesis nickel hidroxide by electrolysis at high voltage, ARPN J. Eng. Appl. Sci, 9(11) (2014) 2074-2077. [42] A.M. Mitchell, M.G. Mellon, Colorimetric determination of nickel with Dimethylglyoxime, Ind. Eng. Chem. Anal. Ed. 17(6) (1945) 380-382. [43] J.S. Devi, B.V. BhimbA, K. Ratnam, In vitro anticancer activity of silver nanoparticles synthesized using the extract of Gelidiella sp, Int J Pharm Pharm Sci 4(2012) 710-715. [44] S. Rajeshkumar, C. Malarkodi, G. Gnanajobitha, K. Paulkumar, M. Vanaja, C. Kannan, G. Annadurai, Seaweed-mediated synthesis of gold nanoparticles using Turbinaria conoides and its characterization, J. Nanostructure Chem 3(44) (2013). [45] E. Arshadi, S. Sedaghat, O. Moradi, Green synthesis and characterization of silver nanoparticles using fructose, Asian J. Green Chem 2(2018) 41-50. [46] S. Omidi, S. Sedaghat, K. Tahvildari, P. Derakhshi, F. Motiee, Biosynthesis of silver nanoparticles with adiantum capillus-veneris L leaf extract in the batch process and assessment of antibacterial activity, Green Chem. Lett. Rev 11(2018) 544-551. [47] Pramod Vasudeo, Biosynthesis of nickel nanoparticles using leaf extract of coriander, BioTechnology, BioTechnology:An Indian Journal 12(11) (2016) 106-112. [48] B.A. Fil, C. Ozmetin, M. Korkmaz, Characterization and electro-kinetic properties of montmorillonite, Bulg. Chem. Commun. 46(2) (2014) 258-263. [49] V.V. Krupskaya, S.V. Zakusin, E.A. Tyupina, O.V. Dorzhieva, A.P. Zhukhlistov, P.E. Belousov, M.N. Timofeeva, Experimental study of Montmorillonite structure and transformation of its properties under treatment with inorganic acid solutions, Minerals 7(4) (2017) 49-64. [50] X.L. Tan, J. Hu, X. Zhou, S.M. Yu, X.K. Wang, Characterization of Lin'an Montmorillonite and its application in the removal of Ni2+ from aqueous solutions, Radiochim. Acta 96(2008) 487-495. [51] E.W. Maina, H.J. Wanyika, A.N. Gacanja, Instrumental Characterization of montmorillonite Clay by FT-IR and XRD from J.K.U.A.T Farm, in the Republic of Kenya, Chem. Mater 7(10) (2015) 43-49. [52] P. Djomgoue, D. Njopwouo, FT-IR spectroscopy applied for surface clays characterization, J. Surf. Eng. Mater. Adv. Technol 3(2013) 275-282. [53] M. Holtzer, A. Bobrowski, B. Grabowska, Montmorillonite:A comparison of methods for its determination in foundry bentonites, METALURGIJA 50(2) (2011) 119-122. [54] Ch. Prasad, K. Sreenivasulu, S. Gangadhara, P. Venkateswarlu, Bio inspired green synthesis of Ni/Fe3O4 magnetic nanoparticles using Moringa oleifera leaves extract:A magnetically recoverable catalyst for organic dye degradation in aqueous solution, J. Alloys Compd. 700(2017) 252-258. [55] H.P. Singh, S. Sharma, S.K. Sharma, R.K. Sharma, Biogenic synthesis of metal nanocatalysts using Mimosa pudica leaves for efficient reduction of aromatic nitrocompounds, RSC Adv. 4(2014) 37816-37825. [56] G. Elango, S.M. Roopan, K.I. Dhamodaran, K. Elumalai, N.A. Al-Dhabi, M.V. Arasu, Spectroscopic investigation of biosynthesized nickel nanoparticles and its larvicidal, pesticidal activities, J. Photochem. Photobiol. B 162(2016) 162-167. [57] V. Elakkiya, R. Abhishekram, S. Sumathi, Copper doped nickel aluminate:Synthesis, characterisation, optical and colour properties, Chin. J. Chem. Eng. 27(10) (2019) 2596-2605. [58] R. Nishanthi, S. Malathi, S. John Paul, P. Palani, Green synthesis and characterization of bioinspired silver, gold and platinum nanoparticles and evaluation of their synergistic antibacterial activity after combining with different classes of antibiotics, Mater. Sci. Eng. C 96(2019) 693-707. [59] R.S. Babu, P. Prabhu, S.S. Narayanan, Green synthesized nickel nanoparticles modified electrode in ionic liquid medium and its application towards determination of biomolecules, Talanta 110(2013) 135-143. [60] M. Guo, Y. Yu, J. Hu, Nickel nanoparticles for the efficient Electrocatalytic oxidation of methanol in an alkaline medium, Electrocatalysis 8(4) (2017) 392-398. [61] R.M. Abdel Hameed, R.M. El-Sherif, Microwave irradiated nickel nanoparticles on Vulcan XC-72R carbonblack for methanol oxidation reaction in KOH solution, Appl. Catal. B Environ 162(2015) 217-226. [62] M. Asghari, M.Gh. Maragheh, R. Davarkhah, E. Lohrasbi, A. Nozad Golikand, Electrocatalytic oxidation of methanol on the nickel-cobalt modified glassy carbon electrode in alkaline medium, Electrochim. Acta 59(2012) 284-289. [63] J. Li, Z. Luo, Y. Zuo, J. Liu, T. Zhang, P. Tang, J. Arbiol, J. Llorca, A. Cabot, NiSn bimetallic nanoparticles as stable Electrocatalysts for methanol oxidation reaction, Appl. Catal. B Environ. 234(2018) 10-18. [64] E. Laviron, J. Electroanal. Chem. 101(1979) 19-28. [65] N.A.M. Barakat, M.A. Yassin, F.S. Al-Mubaddel, M.T. Amen, New electrooxidation characteristic for Ni-based electrodes for wide application in methanol fuel cells, Appl. Catal. A Gen. 555(2018) 148-154. [66] M.W. Khalil, M.A. Abdel Rahim, A. Zimmer, B. Hana, R. Hassan, M. Abdel Hameed, Nickel impregnated silicalite-1 as an electro-catalyst for methanol oxidation, J. Power Sources 144(2005) 35-41. [67] R. Zhang, W. Zhang, L. Gao, J. Zhang, P. Li, W. Wang, R. Li, Electrocatalytic oxidation of methanol on Ni(II)Salen complex encapsulated with type-Y zeolite, Appl. Catal. A Gen. 466(2013) 264-271. [68] Y. Wang, W. Chen, D. Pan, Q. Xu, J. Ma, J. Zheng, R. Li, Methanol electrooxidation reaction in alkaline medium on glassy carbon electrode modified with ordered mesoporous Ni/Al2O3, Int. J. Electrochem 12(2017) 2194-2206. [69] M. Mazloum-Ardakani, V. Eslami, A. Khoshroo, Nickel nitride nanoparticles as efficient electrocatalyst for effective electrooxidation of ethanol and methanol in alkaline media, Mat. Sci. Eng. B-Adv 229(2018) 201-205. [70] M. Abrishamkar, F.B. Kahkeshi, Synthesis and characterization of nano-ZSM-5 zeolite and its application for electrocatalytic oxidation of formaldehyde over modified carbon paste electrode with ion exchanged synthesized zeolite in alkaline media, Microporous Mesoporous Mater. 167(2013) 51-54. [71] Z. Galus, Fundamentals of Electrochemical Analysis, Ellis Horwood, New York, 1976. [72] M. Sunitha, N. Durgadevi, A. Sathish, T. Ramachandran, Performance evaluation of nickel as anode catalyst for DMFC in acidic and alkaline medium, J. Fuel Chem. Technol. 46(5) (2018) 592-599. [73] S. Das, K. Dutta, P.P. Kundu, Nickel nanocatalysts supported on sulfonated polyaniline:Potential toward methanol oxidation and as anode materials for DMFCs, J. Mater. Chem. A 21(2015) 11139-11670. [74] Chien-Te Hsieha, Jia-Yi Lin, Fabrication of bimetallic Pt-M (M=Fe, Co, and Ni) nanoparticle/carbon nanotube electrocatalysts for direct methanol fuel cells, J. Power Sources 188(2009) 347-352. [75] J. Wang, Q. Zhao, H. Hou, Y. Wu, W. Yu, X. Ji, L. Shao, Nickel nanoparticles supported on nitrogen-doped honeycomb-like carbon frameworks for effective methanol oxidation, RSC Adv. 7(2017) 14152-14158. [76] R.S. Amin, R.M. Abdel Hameed, K.M. El-Khatib, M.E. Youssef, Electrocatalytic activity of nanostructured Ni and PdeNi on Vulcan XC-72R carbon black for methanol oxidation in alkaline medium, Int. J. Hydrogen Energ 39(2014) 2026-2041. [77] H. Zhu, J. Wang, X. Liu, X. Zhu, Three-dimensional porous graphene supported Ni nanoparticles with enhanced catalytic performance for methanol electrooxidation, Int. J. Hydrogen Energ 42(2017) 11206-11214. |
[1] | Yingmeng Zhang, Luting Liu, Qingwei Deng, Wanlin Wu, Yongliang Li, Xiangzhong Ren, Peixin Zhang, Lingna Sun. Hybrid CuO-Co3O4 nanosphere/RGO sandwiched composites as anode materials for lithium-ion batteries [J]. Chinese Journal of Chemical Engineering, 2022, 47(7): 185-192. |
[2] | Dongze Ma, Ye Tian, Tiefei He, Xiaobiao Zhu. Preparation of novel magnetic nanoparticles as draw solutes in forward osmosis desalination [J]. Chinese Journal of Chemical Engineering, 2022, 46(6): 223-230. |
[3] | Zijun Li, Shubo Wang, Sai Yao, Xueke Wang, Weiwei Li, Tong Zhu, Xiaofeng Xie. Experimental and numerical study on improvement performance by wave parallel flow field in a proton exchange membrane fuel cell [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 90-102. |
[4] | Yingjie Zhou, Wenhui Zhang, Shengwei Yu, Haibo Jiang, Chunzhong Li. Patterned catalyst layer boosts the performance of proton exchange membrane fuel cells by optimizing water management [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 246-252. |
[5] | Chen Gu, Wenqiang Weng, Cong Lu, Peng Tan, Yao Jiang, Qiang Zhang, Xiaoqin Liu, Linbing Sun. Decorating MXene with tiny ZIF-8 nanoparticles: An effective approach to construct composites for water pollutant removal [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 42-48. |
[6] | Jian Chen, Lingbing Bu, Yingqi Luo. Comparative study on pressure swing adsorption system for industrial hydrogen and fuel cell hydrogen [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 112-119. |
[7] | Keya Tang, Jincheng Wang. Chlorinated butyl rubber/two-step modified montmorillonite nanocomposites: Mechanical and damping properties [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 437-449. |
[8] | Jinyan Xi, Kang Meng, Ying Li, Meng Wang, Qiang Liao, Zidong Wei, Minhua Shao, Jianchuan Wang. Performance improvement of ultra-low Pt proton exchange membrane fuel cell by catalyst layer structure optimization [J]. Chinese Journal of Chemical Engineering, 2022, 41(1): 473-479. |
[9] | Saboura Ashkevarian, Jalil Badraghi, Fatemeh Mamashli, Behdad Delavari, Ali Akbar Saboury. Covalent immobilization and characterization of Rhizopus oryzae lipase on core-shell cobalt ferrite nanoparticles for biodiesel production [J]. Chinese Journal of Chemical Engineering, 2021, 37(9): 128-136. |
[10] | Mohammad Yousefi, Shima Azizi, S. M. Peyghambarzadeh, Zoha Azizi. Ethylene absorption in N-methyl-2-pyrrolidone/silver nano-solvent: Thermodynamics and kinetics study [J]. Chinese Journal of Chemical Engineering, 2021, 36(8): 57-66. |
[11] | Najeebullah Lashari, Tarek Ganat. Synthesized graphene oxide and fumed aerosil 380 dispersion stability and characterization with partially hydrolyzed polyacrylamide [J]. Chinese Journal of Chemical Engineering, 2021, 34(6): 307-322. |
[12] | Chuanshuai Dong, Lin Lu, Tao Wen, Shaojie Zhang. Thermal performance assessment of self-rotating twisted tapes and Al2O3 nanoparticle in a circular pipe [J]. Chinese Journal of Chemical Engineering, 2021, 32(4): 77-86. |
[13] | Yanyong Li, Meng Ge, Jiameng Wang, Mengquan Guo, Fanji Liu, Mingxun Han, Yanhong Xu, Lihong Zhang. Dehydrogenation of isobutane to isobutene over a Pt-Cu bimetallic catalyst in the presence of LaAlO3 perovskite [J]. Chinese Journal of Chemical Engineering, 2021, 32(4): 203-211. |
[14] | Xueping Liu, Ping Xue, Feng Jia, Dongya Qiu, Keren Shi, Weiwei Zhang. Tailoring polymeric composite gel beads-encapsulated microorganism for efficient degradation of phenolic compounds [J]. Chinese Journal of Chemical Engineering, 2021, 32(4): 301-306. |
[15] | Muralikrishna Boni, S. Srinivasa Rao, G. Naga Srinivasulu. Performance evaluation of the incorporation of different wire meshes in between perforated current collectors and membrane electrode assembly on the Passive Direct methanol fuel cell [J]. Chinese Journal of Chemical Engineering, 2021, 32(4): 360-367. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||