[1] G. Félix, J. Ancheyta, Regular solution model to predict the asphaltenes flocculation and sediments formation during hydrocracking of heavy oil, Fuel 260(2020) 116160. [2] J.K. Yang, T.J. Zuo, Y.Y. Lu, W.S. Zeng, J.Y. Lv, Catalytic performance of NiMo/Al2O3-USY in the hydrocracking of low-temperature coal tar, J. Fuel Chem. Technol. 47(9) (2019) 1053-1066. [3] E.N. Vlasova, G.A. Bukhtiyarova, I.V. Deliy, P.V. Aleksandrov, A.A. Porsin, M.A. Panafidin, E.Y. Gerasimov, V.I. Bukhtiyarov, J.L.G. Fierro, N. Escalona, The effect of rapeseed oil and carbon monoxide on SRGO hydrotreating over sulfide CoMo/Al2O3 and NiMo/Al2O3 catalysts, Catal. Today 357(2019) 526-533. [4] J.N. Díaz de León, J.Antunes-García, G. Alonso-Nuñez, T.A. Zepeda, D.H. Galvan, J.A. de los Reyes, Support effects of NiW hydrodesulfurization catalysts from experiments and DFT calculations, Appl. Catal. B Environ. 238(2018) 480-490. [5] K. Guo, H. Li, Z. Yu, In-situ heavy and extra-heavy oil recovery:A review, Fuel 185(2016) 886-902. [6] E. Rodríguez, G. Félix, J. Ancheyta, F. Trejo, Modeling of hydrotreating catalyst deactivation for heavy oil hydrocarbons, Fuel 225(2018) 118-133. [7] Y. Zhang, K. Zhou, L. Zhang, H.D. Wu, J. Guo, Synthesis of mesoporous γ-Al2O3 by using cellulose nanofiber as template for hydrodesulfurization of dibenzothiophene, Fuel 253(2019) 431-440. [8] M. Ebrahiminejad, R. Karimzadeh, Hydrocracking and hydrodesulfurization of diesel over zeolite beta-containing NiMo supported on activated red mud, Adv. Powder Technol. 30(8) (2019) 1450-1461. [9] M.O. Kazakov, K.A. Nadeina, I.G. Danilova, P.P. Dik, O.V. Klimov, Y.V. Pereyma, Influence of USY zeolite recrystallization on physicochemical properties and catalytic performance of NiMo/USY-Al2O3 hydrocracking catalysts, Catal. Today 329(2019) 108-115. [10] X. Wang, B. Zhao, D.E. Jiang, Y.C. Xie, Monolayer dispersion of MoO3, NiO and their precursors on γ-Al2O3, Appl. Catal. A Gen. 188(1) (1999) 201-209. [11] G.Z. Bian, L. Fan, Y.L. Fu, K. Fujimoto, High temperature calcined K-MoO3/γ-Al2O3 catalysts for mixed alcohols synthesis from syngas:Effects of Mo loadings, Appl. Catal. A Gen. 170(2) (1998) 255-268. [12] K. Kouachi, G. Lafaye, S. Pronier, L. Bennini, S. Menad, Mo/γ-Al2O3 catalysts for the Biginelli reaction. Effect of Mo loading, J. Mol. Catal. A Chem. 395(2014) 210-216. [13] P. Tan, The catalytic performance of Mo-impregnated HZSM-5 zeolite in CH4 aromatization:Strong influence of Mo loading and pretreatment conditions, Catal. Commun. 103(2018) 101-104. [14] J. Li, L. Xiang, X. Feng, Z. Wang, Influence of hydrothermally modified γ-Al2O3 on the properties of NiMo/γ-Al2O3 catalyst, Appl. Surf. Sci. 254(7) (2008) 2077-2080. [15] H. Li, M. Li, Y. Chu, F. Liu, H. Nie, Effect of different preparation methods of MoO3/Al2O3 catalysts on the existing states of Mo species and hydrodesulfurization activity, Fuel 116(2014) 168-174. [16] H.L. Yin, X.L. Liu, T.N. Zhou, A.G. Lin, Effect of preparation method of nanosized zeolite HY-Al2O3 composite as NiMo catalyst support on diesel HDS, J. Fuel Chem. Technol. 46(8) (2018) 950-956. [17] P. Mohanty, C.J. Sheppard, B.P. Doyle, E. Carleschi, A.R.E. Prinsloo, Evolution of NiO phase at the expense of metallic nickel:Structure, magnetic and electronic properties, Phys. B Condens. Matter 570(2019) 285-290. [18] Y. Cao, H. Wang, R. Ding, L. Wang, Z. Liu, B. Lv, Highly efficient oxidative desulfurization of dibenzothiophene using Ni modified MoO3 catalyst, Appl. Catal. A Gen. 589(2020) 117308. [19] X. Fan, J. Li, Z. Zhao, Y. Wei, J. Liu, A. Duan, G. Jiang, Synthesis of a new ordered mesoporous NiMoO4 complex oxide and its efficient catalytic performance for oxidative dehydrogenation of propane, J. Energy Chem. 23(2) (2014) 171-178. [20] S. Chen, Y. Yang, K. Zhang, J. Wang, BETA zeolite made from mesoporous material and its hydrocracking performance, Catal. Today 116(1) (2006) 2-5. [21] D.Q. Zhang, A.J. Duan, Z. Zhao, C Xu, Synthesis, characterization, and catalytic performance of NiMo catalysts supported on hierarchically porous Beta-KIT-6 material in the hydrodesulfurization of dibenzothiophene, J. Catal. 274(2) (2010) 273-286. [22] M.Z. Hossain, M.B.I. Chowdhury, P.A. Charpentier, Effect of surface acidity of Al2O3 supported metal catalysts on catalytic activity and carbon deposition during SCWG of glucose, Biomass Bioenergy 124(2019) 142-150. [23] N.B. Shali, S. Sugunan, Influence of transition metals on the surface acidic properties of titania prepared by sol-gel route, Mater. Res. Bull. 42(9) (2007) 1777-1783. [24] S. Rajagopal, J.A. Marzari, R. Miranda, Silica-alumina-supported mo oxide catalysts, Genesis and Demise of Bronsted-Lewis Acidity 151(1) (1995) 192-203. [25] P. Arnoldy, J.C.M. De Jonge, J. Moulijn, A temperature-programed reduction of molybdenum(VI) oxide and molybdenum(IV) oxide 89(21) (1985) 4517-4526. [26] M. Henker, K.P. Wendlandt, J. Valyon, P. Bornmann, Structure of MoO3/Al2O3-SiO2 catalysts, Appl. Catal. 69(1) (1991) 205-220. [27] E. José, M.C. Barrera, A.W. Gutiérrez, M.A. Cortés-Jacome, C. Angeles-Chávez, J. A. Toledo, Highly active P-doped sulfided NiMo/alumina HDS catalysts from Mo-blue by using saccharose as reducing agents precursor, Applied Catalysis B Environmental 237(2018) 708-720. [28] O.V. Klimov, K.A. Nadeina, P.P. Dik, G.I. Koryakina, V.Y. Pereyma, M.O. Kazakov, CoNiMo/Al2O3 catalysts for deep hydrotreatment of vacuum gasoil, Catal. Today S0920586115007221(2015). [29] E.J.M. Hensen, V.H.J. de Beer, J.A.R. van Veen, R.A. van Santen, A refinement on the notion of type I and II (Co)MoS phases in hydrotreating catalysts, Catal. Lett. 84(1) (2002) 59-67. [30] E.G. Derouane, E. Pedersen, B.S. Clausen, Z. Gabelica, R. Candia, H. Topsøe, EPR studies on unsupported and alumina-supported sulfided, CoMo hydrodesulfurization catalysts. 99(2) (1986) 253-261. [31] B. Cai, X.C. Zhou, Y.C. Miao, J.Y. Luo, H. Pan, Y.B. Huang, Enhanced catalytic transfer hydrogenation of ethyl levulinate to γ-valerolactone over a robust Cu-Ni bimetallic catalyst, ACS Sustain. Chem. Eng. 5(2) (2017) 1322-1331. [32] Y. Fan, H. Xiao, G. Shi, H. Liu, Y. Qian, T. Wang, Citric acid-assisted hydrothermal method for preparing NiW/USY-Al2O3 ultradeep hydrodesulfurization catalysts, J. Catal. 279(1) (2011) 27-35. [33] B. Hinnemann, J.K. Nørskov, H. Topsøe, A density functional study of the chemical differences between type I and type II MoS2-based structures in Hydrotreating catalystsy, J. Phys. Chem. B 109(6) (2005) 2245-2253. [34] H. Yin, T. Zhou, Y. Liu, Y. Chai, C. Liu, NiMo/Al2O3 catalyst containing nanosized zeolite Y for deep hydrodesulfurization and hydrodenitrogenation of diesel, J. Energy Chem. 20(4) (2011) 441-448. [35] E.J.M. Hensen, P.J. Kooyman, Y.V.D. Meer, Y. van der Meer, A.M. van der Kraan, V.H.J. de Beer, The relation between morphology and hydrotreating activity for supported mos2 particles, Journal of Catalysis 199(2) (2001) 224-235. [36] C. Navarrete, R. García, C. Sepulveda, F.J. Gil-Llambias, Deep hydrodesulphurization via hydrogen spillover, Catal. Lett. 141(12) (2011) 1796-1802. |