[1] J. Hansen, D. Johnson, A. Lacis, S. Lebedeff, P. Lee, D. Rind, G. Russell, Climate impact of increasing atmospheric carbon dioxide, Science 213(4511) (1981) 957-966.[2] K. Caldeira, A.K. Jain, M.I. Hoffert, Climate sensitivity uncertainty and the need for energy without CO2 emission, Science 299(5651) (2003) 2052-2054.[3] C.G. Visconti, M. Martinelli, L. Falbo, A. Infantes-Molina, L. Lietti, P. Forzatti, G. Iaquaniello, E. Palo, B. Picutti, F. Brignoli, CO2 hydrogenation to lower olefins on a high surface area Kpromoted bulk Fe-catalyst, Appl. Catal. B Environ. 200(2017) 530-542.[4] S. Saeidi, N.A.S. Amin, M.R. Rahimpour, Hydrogenation of CO2 to value-added products-A review and potential future developments, J. CO2 Util. 5(1) (2014) 66-81.[5] M. Mikkelsen, A review of fixation and transformation of carbon dioxide, Energy Environ. Sci. 3(1) (2009) 43-81.[6] H. Yang, Z. Xu, M. Fan, R. Gupta, R.B. Slimane, A.E. Bland, I. Wright, Progress in carbon dioxide separation and capture:A review, J. Environ. Sci. 20(1) (2008) 14-17.[7] S.K. Hoekman, A. Broch, C. Robbins, R. Purcell, CO2 recycling by reaction with renewably-generated hydrogen, Int. J. Greenhouse Gas Control 4(1) (2010) 44-50.[8] J. Kemper, Biomass and carbon dioxide capture and storage:A review, Int. J. Greenhouse Gas Control 40(2015) 401-430.[9] J. Wei, Q. Ge, R. Yao, Z. Wen, C. Fang, L. Guo, H. Xu, J. Sun, Directly converting CO2 into a gasoline fuel, Nat. Commun. 8(2017) 15174, https://doi.org/10.1038/ncomms15174.[10] P. Gao, S. Li, X. Bu, S. Dang, Z. Liu, H. Wang, L. Zhong, M. Qiu, C. Yang, J. Cai, W. Wei, Y. Sun, Direct conversion of CO2 into liquid fuels with high selectivity over a bifunctional catalyst, Nat. Chem. 9(2017) 1019-1024.[11] D. Mattia, M.D. Jones, J.P. O'Byrne, O.G. Griffiths, R.E. Owen, E. Sackville, M. McManus, P. Plucinski, Towards carbon-neutral CO2 conversion to hydrocarbons, ChemSusChem 8(23) (2015) 4064-4072.[12] M. Albrecht, U. Rodemerck, M. Schneider, M. Br?ring, D. Baabe, E.V. Kondratenko, Unexpectedly efficient CO2 hydrogenation to higher hydrocarbons over nondoped Fe2O3, Appl. Catal. B Environ. 204(2016) 119-126.[13] T. Herranz, S. Rojas, F.J. Perez-Alonso, M. Ojeda, P. Terreros, J.L.G. Fierro, Hydrogenation of carbon oxides over promoted Fe-Mn catalysts prepared by the microemulsion methodology, Appl. Catal. A Gen. 311(1) (2006) 66-75.[14] T. Ishihara, K. Eguchi, H. Arai, Hydrogenation of carbon monoxide over SiO2-supported Fe-Co, Co-Ni, and Ni-Fe bimetallic catalysts, Appl. Catal. 18(51) (1987) 225-238.[15] S. Li, A. Li, S. Krishnamoorthy, E. Iglesia, Effects of Zn, Cu, and K promoters on the structure and on the reduction, carburization, and catalytic behavior of iron-based Fischer-Tropsch synthesis catalysts, Catal. Lett. 77(4) (2001) 197-205.[16] R.W. Dorner, D.R. Hardy, C2-C5+ olefin production from CO2 hydrogenation using ceria modified Fe/Mn/K catalysts, Catal. Commun. 15(1) (2011) 88-92.[17] J. Zhang, S. Lu, S. Fan, T. Zhao, K. Zhang, Hydrothermal preparation of Fe-Mn catalyst for light olefin synthesis from CO hydrogenation, Nano Rep. 1(2015) 15-19.[18] F. Tihay, A.C. Roger, G. Pourroy, A. Kiennemann, Role of the alloy and spinel in the catalytic behavior of Fe-Co/cobalt magnetite composites under CO and CO2 hydrogenation, Energy Fuel 16(5) (2002) 1271-1276.[19] A.A. Mirzaei, R. Habibpour, E. Kashi, Preparation and optimization of mixed iron cobalt oxide catalysts for conversion of synthesis gas to light olefins, Appl. Catal. A Gen. 296(2) (2005) 222-231.[20] S.A. Gardezi, J.T. Wolan, B. Joseph, Effect of catalyst preparation conditions on the performance of eggshell cobalt/SiO2 catalysts for Fischer-Tropsch synthesis, Appl. Catal. A Gen. 447-448(24) (2012) 151-163.[21] S.L. Soled, E. Iglesia, S. Miseo, Bruce A. DeRites, Rocco A. Fiato, Selective synthesis of alpha-olefins on Fe-Zn Fischer-Tropsch catalysts, Top. Catal. 2(1) (1995) 193-205.[22] H. Wang, Y. Yang, J. Xu, H. Wang, M. Ding, Y. Li, Study of bimetallic interactions and promoter effects of FeZn, FeMn and FeCr Fischer-Tropsch synthesis catalysts, J. Mol. Catal. A Chem. 326(1) (2010) 29-40.[23] J. Zhang, S. Lu, X. Su, S. Fan, Q. Ma, T. Zhao, Selective formation of light olefins from CO2 hydrogenation over Fe-Zn-K catalysts, J. CO2 Util. 12(10) (2015) 95-100.[24] P. Zhai, C. Xu, R. Gao, X. Liu, M. Li, W. Li, X. Fu, C. Jia, J. Xie, M. Zhao, X. Wang, Y. Li, Q. Zhang, X. Wen, D. Ma, Highly tunable selectivity for syngas-derived alkenes over zinc and sodium-modulated Fe5C2 catalyst, Angew. Chem. Int. Ed. 55(34) (2016) 10056-10061.[25] J. Abbott, N.J. Clark, B.G. Baker, Effects of sodium aluminium and manganese on the Fischer-Tropsch synthesis over alumina-supported iron catalysts, Appl. Catal. 26(1-2) (1986) 141-153.[26] A.P. Raje, R.J. O'Brien, B.H. Davis, Effect of potassium promotion on iron-based catalysts for Fischer-Tropsch synthesis, J. Catal. 180(1) (1998) 36-43.[27] Y. Yang, H.W. Xiang, Y.Y. Xu, L. Bai, Y.W. Li, Effect of potassium promoter on precipitated iron-manganese catalyst for Fischer-Tropsch synthesis, Appl. Catal. A Gen. 266(2) (2004) 181-194.[28] X. An, B.S. Wu, H.J. Wan, T.Z. Li, Z.C. Tao, H.W. Xiang, Y.W. Li, Comparative study of iron-based Fischer-Tropsch synthesis catalyst promoted with potassium or sodium, Catal. Commun. 8(12) (2007) 1957-1962.[29] X. Zhou, X. Li, H. Sun, P. Sun, X. Liang, F. Liu, X. Hu, G. Lu, Nanosheet-assembled ZnFe2O4 hollow microspheres for high-sensitive acetone sensor, ACS Appl. Mater. Interfaces 7(28) (2015) 15414-15421.[30] M. Liang, W. Kang, K. Xie, Comparison of reduction behavior of Fe2O3, ZnO and ZnFe2O4 by TPR technique, J. Nat. Gas Chem. 18(1) (2009) 110-113.[31] K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol, T. Siemieniewska, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984), Pure Appl. Chem. 57(4) (1985) 603-619.[32] T. Yamashita, P. Hayes, Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials, Appl. Surf. Sci. 254(8) (2008) 2441-2449.[33] X. Gao, J. Zhang, N. Chen, S. Fan, Q. Ma, T. Zhao, N. Tsubaki, Effects of zinc on Fe-based catalysts during the synthesis of light olefins from the Fischer-Tropsch process, Chin. J. Catal. 37(4) (2016) 510-516.[34] X. Min, B. Zhou, Y. Ke, L. Chai, K. Xue, C. Zhang, Z. Zhao, C. Shen, Sulfidation behavior of ZnFe2O4 roasted with pyrite:Sulfur inducing and sulfur-oxygen interface exchange mechanism, Appl. Surf. Sci. 371(2016) 67-73.[35] T. Shido, Y. Iwasawa, Reactant-promoted reaction mechanism for water-gas shift reaction on ZnO, as the genesis of surface catalysis, J. Catal. 129(2) (1991) 343-355.[36] M. Saito, J. Wu, K. Tomoda, I. Takahara, K. Murata, Effects of ZnO contained in supported Cu-based catalysts on their activities for several reactions, Catal. Lett. 83(1) (2002) 1-4. |