Chinese Journal of Chemical Engineering ›› 2022, Vol. 43 ›› Issue (3): 62-69.DOI: 10.1016/j.cjche.2021.11.018
Previous Articles Next Articles
Bo Wu1,2, Xing Yu1,2, Min Huang1,3, Liangshu Zhong1,3, Yuhan Sun1,3
Received:
2021-08-23
Revised:
2021-10-23
Online:
2022-04-28
Published:
2022-03-28
Contact:
Liangshu Zhong,E-mail:zhongls@sari.ac.cn;Yuhan Sun,E-mail:sunyh@sari.ac.cn
Supported by:
Bo Wu1,2, Xing Yu1,2, Min Huang1,3, Liangshu Zhong1,3, Yuhan Sun1,3
通讯作者:
Liangshu Zhong,E-mail:zhongls@sari.ac.cn;Yuhan Sun,E-mail:sunyh@sari.ac.cn
基金资助:
Bo Wu, Xing Yu, Min Huang, Liangshu Zhong, Yuhan Sun. Rh single atoms embedded in CeO2 nanostructure boost CO2 hydrogenation to HCOOH[J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 62-69.
Bo Wu, Xing Yu, Min Huang, Liangshu Zhong, Yuhan Sun. Rh single atoms embedded in CeO2 nanostructure boost CO2 hydrogenation to HCOOH[J]. 中国化学工程学报, 2022, 43(3): 62-69.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2021.11.018
[1] Gao P, Li S, Bu X, Dang S, Liu Z, Wang H, Zhong L, Qiu M, Yang C, Cai J, Wei W, Sun Y, Direct conversion of CO2 into liquid fuels with high selectivity over a bifunctional catalyst, Nat Chem 9 (10) (2017) 1019-1024. https://www.ncbi.nlm.nih.gov/pubmed/28937667/ [2] J. Artz, T.E. Müller, K. Thenert, J. Kleinekorte, R. Meys, A. Sternberg, A. Bardow, W. Leitner, Sustainable conversion of carbon dioxide:an integrated review of catalysis and life cycle assessment, Chem. Rev. 118 (2) (2018) 434-504. Doi:10.1021/acs.chemrev.7b00435 [3] X. Ye, C.Y. Yang, X.L. Pan, J.G. Ma, Y.R. Zhang, Y.J. Ren, X.Y. Liu, L. Li, Y.Q. Huang, Highly selective hydrogenation of CO2 to ethanol via designed bifunctional Ir1-In2O3 single-atom catalyst, J. Am. Chem. Soc. 142 (45) (2020) 19001-19005. Doi:10.1021/jacs.0c08607 [4] S. Sorcar, Y. Hwang, J. Lee, H. Kim, K.M. Grimes, C.A. Grimes, J.W. Jung, C.H. Cho, T. Majima, M.R. Hoffmann, S.I. In, CO2, water, and sunlight to hydrocarbon fuels:a sustained sunlight to fuel (Joule-to-Joule) photoconversion efficiency of 1%, Energy Environ. Sci. 12 (9) (2019) 2685-2696. Doi:10.1039/C9EE00734B [5] A. Álvarez, A. Bansode, A. Urakawa, A.V. Bavykina, T.A. Wezendonk, M. Makkee, J. Gascon, F. Kapteijn, Challenges in the greener production of formates/formic acid, methanol, and DME by heterogeneously catalyzed CO2 hydrogenation processes, Chem. Rev. 117 (14) (2017) 9804-9838. Doi:10.1021/acs.chemrev.6b00816 [6] Q.Y. Wang, S. Santos, C.A. Urbina-Blanco, W.Y. Hernández, M. Impéror-Clerc, E.I. Vovk, M. Marinova, O. Ersen, W. Baaziz, O.V. Safonova, A.Y. Khodakov, M. Saeys, V.V. Ordomsky, Solid micellar Ru single-atom catalysts for the water-free hydrogenation of CO2 to formic acid, Appl. Catal. B:Environ. 290 (2021) 120036. Doi:10.1016/j.apcatb.2021.120036 [7] H. Zhong, M. Iguchi, M. Chatterjee, Y. Himeda, Q. Xu, H. Kawanami, Formic acid-based liquid organic hydrogen carrier system with heterogeneous catalysts, Adv. Sustainable Syst. 2 (2) (2018) 1700161. Doi:10.1002/adsu.201700161 [8] R.Y. Sun, Y.H. Liao, S.T. Bai, M.Y. Zheng, C. Zhou, T. Zhang, B.F. Sels, Heterogeneous catalysts for CO2 hydrogenation to formic acid/formate:from nanoscale to single atom, Energy Environ. Sci. 14 (3) (2021) 1247-1285. Doi:10.1039/d0ee03575k [9] L.L. Zhang, M.X. Zhou, A.Q. Wang, T. Zhang, Selective hydrogenation over supported metal catalysts:from nanoparticles to single atoms, Chem. Rev. 120 (2) (2020) 683-733. Doi:10.1021/acs.chemrev.9b00230 [10].Z. Chen, H.L. Li, W.H. Zhao, W.B. Zhang, J.W. Li, W. Li, X.S. Zheng, W.S. Yan, W.H. Zhang, J.F. Zhu, R. Si, J. Zeng, Y.Z. Chen, H.L. Li, W.H. Zhao, W.B. Zhang, J.W. Li, W. Li, X.S. Zheng, W.S. Yan, W.H. Zhang, J.F. Zhu, R. Si, J. Zeng, Optimizing reaction paths for methanol synthesis from CO Optimizing reaction paths for methanol synthesis from CO 2 hydrogenation via metal-ligand cooperativity, Nat. Commun. 10 (2019) 1885.https://www.nature.com/articles/s41467-019-09918-z hydrogenation via metal-ligand cooperativity, Nat. Commun. 10 (2019) 1885 [11] K.W. Ting, T. Toyao, S.M.A.H. Siddiki, K.I. Shimizu, Low-temperature hydrogenation of CO2 to methanol over heterogeneous TiO2-supported Re catalysts, ACS Catal. 9 (4) (2019) 3685-3693. Doi:10.1021/acscatal.8b04821 [12] K. Mori, T. Taga, H. Yamashita, Isolated single-atomic Ru catalyst bound on a layered double hydroxide for hydrogenation of CO2 to formic acid, ACS Catal. 7 (5) (2017) 3147-3151. Doi:10.1021/acscatal.7b00312 [13] N.H.M. Dostagir, R. Rattanawan, M. Gao, J. Ota, J.Y. Hasegawa, K. Asakura, A. Fukouka, A. Shrotri, Co single atoms in ZrO2 with inherent oxygen vacancies for selective hydrogenation of CO2 to CO, ACS Catal. 11 (15) (2021) 9450-9461. Doi:10.1021/acscatal.1c02041 [14] Y.F. Zhu, S.F. Yuk, J. Zheng, M.T. Nguyen, M.S. Lee, J. Szanyi, L. Kovarik, Z.H. Zhu, M. Balasubramanian, V.A. Glezakou, J.L. Fulton, J.A. Lercher, R. Rousseau, O.Y. Gutiérrez, Environment of metal-O-Fe bonds enabling high activity in CO2 reduction on single metal atoms and on supported nanoparticles, J. Am. Chem. Soc. 143 (14) (2021) 5540-5549. Doi:10.1021/jacs.1c02276 [15] Wu B, Yang R, Shi L, Lin T, Yu X, Huang M, Gong K, Sun F, Jiang Z, Li S, Zhong L, Sun Y, Cu single-atoms embedded in porous carbon nitride for selective oxidation of methane to oxygenates, Chem Commun (Camb) 56 (93) (2020) 14677-14680.https://www.ncbi.nlm.nih.gov/pubmed/33165467/ [16] Z. Hu, X.F. Liu, D.M. Meng, Y. Guo, Y.L. Guo, G.Z. Lu, Effect of ceria crystal plane on the physicochemical and catalytic properties of Pd/ceria for CO and propane oxidation, ACS Catal. 6 (4) (2016) 2265-2279. Doi:10.1021/acscatal.5b02617 [17] R.S. Peng, X.B. Sun, S.J. Li, L.M. Chen, M.L. Fu, J.L. Wu, D.Q. Ye, Shape effect of Pt/CeO2 catalysts on the catalytic oxidation of toluene, Chem. Eng. J. 306 (2016) 1234-1246. Doi:10.1016/j.cej.2016.08.056 [18] Q. Lin, K.I. Shimizu, A. Satsuma, Kinetic analysis of reduction process of supported Rh/Al2O3 catalysts by time resolved in situ UV-vis spectroscopy, Appl. Catal. A:Gen. 419-420 (2012) 142-147. Doi:10.1016/j.apcata.2012.01.021 [19] Y. Chen, T.M. Liu, C.L. Chen, W.W. Guo, R. Sun, S. Lv, M. Saito, S. Tsukimoto, Z.C. Wang, Synthesis and characterization of CeO2 nano-rods, Ceram. Int. 39 (6) (2013) 6607-6610. Doi:10.1016/j.ceramint.2013.01.096 [20] G. Spezzati, Y. Su, J.P. Hofmann, A.D. Benavidez, A.T. DeLaRiva, J. McCabe, A.K. Datye, E.J.M. Hensen, Atomically dispersed Pd-O species on CeO2(111) as highly active sites for low-temperature CO oxidation, ACS Catal. 7 (2017) 6887-6891 [21] G. Spezzati, A.D. Benavidez, A.T. DeLaRiva, Y. Su, J.P. Hofmann, S. Asahina, E.J. Olivier, J.H. Neethling, J.T. Miller, A.K. Datye, E.J.M. Hensen, CO oxidation by Pd supported on CeO2(100) and CeO2(111) facets, Appl. Catal. B 243 (2019) 36-46 [22] Z. Li, Y. Feng, Y.L. Liang, C.Q. Cheng, C.K. Dong, H. Liu, X.W. Du, Stable rhodium (IV) oxide for alkaline hydrogen evolution reaction, Adv. Mater. 32 (25) (2020) 1908521. Doi:10.1002/adma.201908521 [23] Shan J, Li M, Allard LF, Lee S, Flytzani-Stephanopoulos M, Mild oxidation of methane to methanol or acetic acid on supported isolated rhodium catalysts, Nature 551 (7682) (2017) 605-608.https://www.ncbi.nlm.nih.gov/pubmed/29189776/ [24] Kwon Y, Kim TY, Kwon G, Yi J, Lee H, Selective activation of methane on single-atom catalyst of rhodium dispersed on zirconia for direct conversion, J Am Chem Soc 139 (48) (2017) 17694-17699.https://www.ncbi.nlm.nih.gov/pubmed/29125746/ [25] T.B. Li, F. Chen, R. Lang, H. Wang, Y. Su, B.T. Qiao, A.Q. Wang, T. Zhang, Styrene hydroformylation with in situ hydrogen:regioselectivity control by coupling with the low-temperature water-gas shift reaction, Angew. Chem. Int. Ed. 59 (19) (2020) 7430-7434. Doi:10.1002/anie.202000998 [26] J. Scalbert, F.C. Meunier, C. Daniel, Y. Schuurman, An operando DRIFTS investigation into the resistance against CO2poisoning of a Rh/alumina catalyst during toluenehydrogenation, Phys. Chem. Chem. Phys. 14 (7) (2012) 2159-2163. Doi:10.1039/c1cp22620g [27] L.B. Wang, W.B. Zhang, S.P. Wang, Z.H. Gao, Z.H. Luo, X. Wang, R. Zeng, A.W. Li, H.L. Li, M.L. Wang, X.S. Zheng, J.F. Zhu, W.H. Zhang, C. Ma, R. Si, J. Zeng, Atomic-level insights in optimizing reaction paths for hydroformylation reaction over Rh/CoO single-atom catalyst, Nat. Commun. 7 (1) (2016) 1-8. Doi:10.1038/ncomms14036 [28] B. Wu, T.J. Lin, R.O. Yang, M. Huang, H. Zhang, J. Li, F.F. Sun, F. Song, Z. Jiang, L.S. Zhong, Y.H. Sun, Ru single atoms for efficient chemoselective hydrogenation of nitrobenzene to azoxybenzene, Green Chem. 23 (13) (2021) 4753-4761. Doi:10.1039/d1gc01439k [29] N. Rui, Z.Y. Wang, K.H. Sun, J.Y. Ye, Q.F. Ge, C.J. Liu, CO2 hydrogenation to methanol over Pd/In2O3:effects of Pd and oxygen vacancy, Appl. Catal. B:Environ. 218 (2017) 488-497. Doi:10.1016/j.apcatb.2017.06.069 [30] B.B. Chen, C. Shi, M. Crocker, Y. Wang, A.M. Zhu, Catalytic removal of formaldehyde at room temperature over supported gold catalysts, Appl. Catal. B:Environ. 132-133 (2013) 245-255. Doi:10.1016/j.apcatb.2012.11.028 [31] D. Luo, B.B. Chen, X.Y. Li, Z.J. Liu, X.W. Liu, X.H. Liu, C. Shi, X.S. Zhao, Three-dimensional nitrogen-doped porous carbon anchored CeO2 quantum dots as an efficient catalyst for formaldehyde oxidation, J. Mater. Chem. A 6 (17) (2018) 7897-7902. Doi:10.1039/c8ta00076j [32] X. Li, T.T. Qin, L.S. Li, B. Wu, T.J. Lin, L.S. Zhong, One-pot synthesis of acetals by tandem hydroformylation-acetalization of olefins using heterogeneous supported catalysts, Catal. Lett. 151 (9) (2021) 2638-2646. Doi:10.1007/s10562-020-03504-5 [33] D. Yang, W. Pei, S. Zhou, J.J. Zhao, W.P. Ding, Y. Zhu, Controllable conversion of CO2on non-metallic gold clusters, Angew. Chem. Int. Ed. 59 (5) (2020) 1919-1924. Doi:10.1002/anie.201913635 [34] J.H. Lee, J. Ryu, J.Y. Kim, S.W. Nam, J.H. Han, T.H. Lim, S. Gautam, K.H. Chae, C.W. Yoon, Carbon dioxide mediated, reversible chemical hydrogen storage using a Pd nanocatalyst supported on mesoporous graphitic carbon nitride, J. Mater. Chem. A 2 (25) (2014) 9490. Doi:10.1039/c4ta01133c [35] P.H. Pandey, H.S. Pawar, Cu dispersed TiO2 catalyst for direct hydrogenation of carbon dioxide into formic acid, J. CO2 Util. 41 (2020) 101267. Doi:10.1016/j.jcou.2020.101267 [36] C.E. Mitchell, U. Terranova, I. Alshibane, D.J. Morgan, T.E. Davies, Q. He, J.S.J. Hargreaves, M. Sankar, N.H. de Leeuw, Liquid phase hydrogenation of CO2 to formate using palladium and ruthenium nanoparticles supported on molybdenum carbide, New J. Chem. 43 (35) (2019) 13985-13997. Doi:10.1039/c9nj02114k [37] Y. Kuwahara, Y. Fujie, H. Yamashita, Poly(ethyleneimine)-tethered Ir complex catalyst immobilized in titanate nanotubes for hydrogenation of CO2 to formic acid, ChemCatChem 9 (11) (2017) 1906-1914. Doi:10.1002/cctc.201700508 [38] K.M.K. Yu, C.M.Y. Yeung, S.C. Tsang, Carbon dioxide fixation into chemicals (methyl formate) at high yields by surface coupling over a Pd/Cu/ZnO nanocatalyst, J. Am. Chem. Soc. 129 (20) (2007) 6360-6361. Doi:10.1021/ja0706302 [39] Z.H. Zhang, L.Y. Zhang, S.Y. Yao, X.Z. Song, W.X. Huang, M.J. Hülsey, N. Yan, Support-dependent rate-determining step of CO2 hydrogenation to formic acid on metal oxide supported Pd catalysts, J. Catal. 376 (2019) 57-67. Doi:10.1016/j.jcat.2019.06.048 [40] S. Masuda, K. Mori, Y. Futamura, H. Yamashita, PdAg nanoparticles supported on functionalized mesoporous carbon:promotional effect of surface amine groups in reversible hydrogen delivery/storage mediated by formic acid/CO2, ACS Catal. 8 (3) (2018) 2277-2285. Doi:10.1021/acscatal.7b04099 [41] A. Cárdenas-Arenas, A. Quindimil, A. Davó-Quiñonero, E. Bailón-García, D. Lozano-Castelló, U. De-La-torre, B. Pereda-Ayo, J.A. González-Marcos, J.R. González-Velasco, A. Bueno-López, Isotopic and in situ DRIFTS study of the CO2 methanation mechanism using Ni/CeO2 and Ni/Al2O3 catalysts, Appl. Catal. B:Environ. 265 (2020) 118538. Doi:10.1016/j.apcatb.2019.118538 [42] F. Wang, S. He, H. Chen, B. Wang, L.R. Zheng, M. Wei, D.G. Evans, X. Duan, Active site dependent reaction mechanism over Ru/CeO2 catalyst toward CO2 methanation, J. Am. Chem. Soc. 138 (19) (2016) 6298-6305. Doi:10.1021/jacs.6b02762 [43] Y. Guo, S. Mei, K. Yuan, D.J. Wang, H.C. Liu, C.H. Yan, Y.W. Zhang, Low-temperature CO2 methanation over CeO2-supported Ru single atoms, nanoclusters, and nanoparticles competitively tuned by strong metal-support interactions and H-spillover effect, ACS Catal. 8 (7) (2018) 6203-6215. Doi:10.1021/acscatal.7b04469 |
[1] | Wenjian Zhu, Xuhua Shen, Rui Ou, Manoj Murugesan, Aihua Yuan, Jianfeng Liu, Xiaocai Hu, Zhen Yang, Ming Shen, Fu Yang. Superhigh selective capture of volatile organic compounds exploiting cigarette butts-derived engineering carbonaceous adsorbent [J]. Chinese Journal of Chemical Engineering, 2022, 46(6): 194-206. |
[2] | Jipeng Dong, Fei Wang, Guanghui Chen, Shougui Wang, Cailin Ji, Fei Gao. Fabrication of nickel oxide functionalized zeolite USY composite as a promising adsorbent for CO2 capture [J]. Chinese Journal of Chemical Engineering, 2022, 46(6): 207-213. |
[3] | Fei Tong, Jie Gong, Liang Yu, Ming Li, Lixiong Zhang. Transparent and anti-fogging AlPO4-5 films constructed by oblique oriented nano-flake crystals [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 332-340. |
[4] | Ding-Ming Xue, Wen-Juan Zhang, Xiao-Qin Liu, Shi-Chao Qi, Lin-Bing Sun. Fabrication of azobenzene-functionalized porous polymers for selective CO2 capture [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 24-30. |
[5] | Xiangzhao Hu, Junjie Sun, Wanzhen Zheng, Sixing Zheng, Yu Xie, Xiang Gao, Bin Yang, Zhongjian Li, Lecheng Lei, Yang Hou. Layered bismuth oxide/bismuth sulfide supported on carrageenan derived carbon for efficient carbon dioxide electroreduction to formate [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 116-123. |
[6] | Pengtao Guo, Miao Chang, Tongan Yan, Yuxiao Li, Dahuan Liu. A pillared-layer metal-organic framework for efficient separation of C3H8/C2H6/CH4 in natural gas [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 10-16. |
[7] | Cuiting Yang, Bowen Wu, Zewei Liu, Guang Miao, Qibin Xia, Zhong Li, Michael J. Janik, Guoqing Li, Jing Xiao. Catalytic adsorptive desulfurization of mercaptan, sulfide and disulfide using bifunctional Ti-based adsorbent for ultra-clean oil [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 25-34. |
[8] | Wanyuan Wang, Chengxin Wen, Daoyuan Zheng, Chunhu Li, Junjie Bian, Xinbo Wang. Simultaneous degradation of RhB and reduction of Cr(VI) by MIL-53(Fe)/Polyaniline (PANI) with the mediation of organic acid [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 55-63. |
[9] | Jiajia Wang, Lizhi Wang, You Wang, Du Zhang, Qin Xiao, Jianhan Huang, You-Nian Liu. Recent progress in porous organic polymers and their application for CO2 capture [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 91-103. |
[10] | Peng Tan, Yao Jiang, Qiurong Wu, Chen Gu, Shichao Qi, Qiang Zhang, Xiaoqin Liu, Linbing Sun. Light-responsive adsorbents with tunable adsorbent-adsorbate interactions for selective CO2 capture [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 104-111. |
[11] | Peter Keliona Wani Likun, Huiyan Zhang, Yuyang Fan. Improving hydrocarbons production via catalytic co-pyrolysis of torrefied-biomass with plastics and dual catalytic pyrolysis [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 196-209. |
[12] | Huaixun Lim, Kunli Goh, Miao Tian, Rong Wang. Membrane-based air dehumidification: A comparative review on membrane contactors, separative membranes and adsorptive membranes [J]. Chinese Journal of Chemical Engineering, 2022, 41(1): 121-144. |
[13] | Hai-Long Liao, Bao-Ju Wang, Ya-Zhao Liu, Yong Luo, Jie-Xin Wang, Guang-Wen Chu, Jian-Feng Chen. Preparation of Pd/γ-Al2O3/nickel foam monolithic catalyst and its performance for selective hydrogenation in a rotating packed bed reactor [J]. Chinese Journal of Chemical Engineering, 2022, 41(1): 311-319. |
[14] | Zilong Liu, Ge Zhao, Xiao Zhang, Lei Gao, Junqing Chen, Weichao Sun, Guanggang Zhou, Guiwu Lu. Superior performance porous carbon nitride nanosheets for helium separation from natural gas: Insights from MD and DFT simulations [J]. Chinese Journal of Chemical Engineering, 2021, 37(9): 46-53. |
[15] | Zhenhao Shen, Chongwei Ma, Darui Wang, Junlin He, Hongmin Sun, Zhirong Zhu, Weimin Yang. Shape-selective alkylation of benzene with ethylene over a core-shell ZSM-5@MCM-41 composite material [J]. Chinese Journal of Chemical Engineering, 2021, 37(9): 64-71. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||