[1] W. Wang, S. Wang, X. Ma, J. Gong, Recent advances in catalytic hydrogenation of carbon dioxide, Chem. Soc. Rev. 40(2011) 3703-3727.[2] T. Cantat, L.-N. He, Innovative methods in CO2 conversion:a breath of fresh air? Curr. Opin. Green Sustain. Chem. 3(2017) iii-iv.[3] X.D. Xu, J.A. Moulijn, Mitigation of CO2 by chemical conversion:plausible chemical reactions and promising products, Energy Fuel 10(1996) 305-325.[4] Q.-W. Song, Z.-H. Zhou, L.-N. He, Efficient, selective and sustainable catalysis of carbon dioxide, Green Chem. 19(2017) 3707-3728.[5] I. Graca, L.V. Gonzalez, M.C. Bacariza, A. Fernandes, C. Henriques, J.M. Lopes, M.F. Ribeiro, CO2 hydrogenation into CH4 on NiHNaUSY zeolites, Appl. Catal. B 147(2014) 101-110.[6] W. Zhen, B. Li, G. Lu, J. Ma, Enhancing catalytic activity and stability for CO2 methanation on Ni@MOF-5 via control of active species dispersion, Chem. Commun. 51(2015) 1728-1731.[7] J. Xu, Q. Lin, X. Su, H. Duan, H. Geng, Y. Huang, CO2 methanation over TiO2-Al2O3 binary oxides supported Ru catalysts, Chin. J. Chem. Eng. 24(2016) 140-145.[8] H.L. Song, J. Yang, J. Zhao, L.J. Chou, Methanation of carbon dioxide over a highly dispersed Ni/La2O3 catalyst, Chin. J. Catal. 31(2010) 21-23.[9] F. Ocampo, B. Louis, L. Kiwi-Minsker, A.-C. Roger, Effect of Ce/Zr composition and noble metal promotion on nickel based CexZr1-xO2 catalysts for carbon dioxide methanation, Appl. Catal. A 392(2011) 36-44.[10] H.C. Lee, K.W. Siew, M.R. Khan, S.Y. Chin, J. Gimbun, C.K. Cheng, Catalytic performance of cement clinker supported nickel catalyst in glycerol dry reforming, J. Energy Chem. 23(2014) 645-656.[11] H. Zhu, R. Razzaq, L. Jiang, C. Li, Low-temperature methanation of CO in coke oven gas using single nanosized Co3O4 catalysts, Catal. Commun. 23(2012) 43-47.[12] P. Munnik, P.E. de Jongh, K.P. de Jong, Control and impact of the nanoscale distribution of supported cobalt particles used in Fischer-Tropsch catalysis, J. Am. Chem. Soc. 136(2014) 7333-7340.[13] G. Zhou, T. Wu, H. Xie, X. Zheng, Effects of structure on the carbon dioxide methanation performance of Co-based catalysts, Int. J. Hydrog. Energy 38(2013) 10012-10018.[14] G. Zhou, T. Wu, H. Zhang, H. Xie, Y. Feng, Carbon dioxide Methanation on ordered mesoporous Co/KIT-6 catalyst, Chem. Eng. Commun. 201(2014) 233-240.[15] A.Y. Khodakov, W. Chu, P. Fongarland, Advances in the development of novel cobalt Fischer-Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels, Chem. Rev. 107(2007) 1692-1744.[16] S.L. Soled, E. Iglesia, R.A. Fiato, J.E. Baumgartner, H. Vroman, S. Miseo, Control of metal dispersion and structure by changes in the solid-state chemistry of supported cobalt Fischer-Tropsch catalysts, Top. Catal. 26(2003) 101-109.[17] Y. Zhu, S. Zhang, Y. Ye, X. Zhang, L. Wang, W. Zhu, F. Cheng, F. Tao, Catalytic conversion of carbon dioxide to methane on ruthenium-cobalt bimetallic nanocatalysts and correlation between surface chemistry of catalysts under reaction conditions and catalytic performances, ACS Catal. 2(2012) 2403-2408.[18] X. Zhou, T. Su, Y. Jiang, Z. Qin, H. Ji, Z. Guo, CuO-Fe2O3-CeO2/HZSM-5 bifunctional catalyst hydrogenated CO2 for enhanced dimethyl ether synthesis, Chem. Eng. Sci. 153(2016) 10-20.[19] Z.Z. Qin, X.H. Zhou, T.M. Su, Y.X. Jiang, H.B. Ji, Hydrogenation of CO2 to dimethyl ether on la-, Ce-modified Cu-Fe/HZSM-5 catalysts, Catal. Commun. 75(2016) 78-82.[20] R.-w. Liu, Z.-z. Qin, H.-b. Ji, T.-m. Su, Synthesis of dimethyl ether from CO2 and H2 using a Cu-Fe-Zr/HZSM-5 catalyst system, Ind. Eng. Chem. Res. 52(2013) 16648-16655.[21] M.C.Bacariza,I.Graca,S.S.Bebiano, J.M.Lopes, C.Henriques, Magnesium aspromoter of CO2 Methanation on Ni-based USY zeolites, Energy Fuel 31(2017) 9776-9789.[22] K. Ray, G. Deo, A potential descriptor for the CO2 hydrogenation to CH4 over Al2O3 supported Ni and Ni-based alloy catalysts, Appl. Catal. B 218(2017) 525-537.[23] C.E. Daza, O.A. Gamba, Y. Hernandez, M.A. Centeno, F. Mondragon, S. Moreno, R. Molina, High-stable mesoporous Ni-Ce/clay catalysts for syngas production, Catal. Lett. 141(2011) 1037-1046.[24] W. Ahmad, M.N. Younis, R. Shawabkeh, S. Ahmed, Synthesis of lanthanide series (La, Ce, Pr, Eu & Gd) promoted Ni/γ-Al2O3 catalysts for methanation of CO2 at low temperature under atmospheric pressure, Catal. Commun. 100(2017) 121-126.[25] S. Modak, M. Ammar, F. Mazaleyrat, S. Das, P.K. Chakrabarti, XRD, HRTEM and magnetic properties of mixed spinel nanocrystalline Ni-Zn-Cu-ferrite, J. Alloys Compd. 473(2009) 15-19.[26] M. Bahmani, B. Vasheghani Farahani, S. Sahebdelfar, Preparation of high performance nano-sized Cu/ZnO/Al2O3 methanol synthesis catalyst via aluminum hydrous oxide sol, Appl. Catal. A 520(2016) 178-187.[27] Y. Wang, R. Wu, Y. Zhao, Effect of ZrO2 promoter on structure and catalytic activity of the Ni/SiO2 catalyst for CO methanation in hydrogen-rich gases, Catal. Today 158(2010) 470-474.[28] L. Samiee, F. Shoghi, A. Vinu, Fabrication and electrocatalytic application of functionalized nanoporous carbon material with different transition metal oxides, Appl. Surf. Sci. 265(2013) 214-221.[29] B.A. Sexton, A.E. Hughes, T.W. Turney, An XPS and TPR study of the reduction of promoted cobalt-kieselguhr Fischer-Tropsch catalysts, J. Catal. 97(1986) 390-406.[30] J. Li, N.J. Coville, Effect of boron on the sulfur poisoning of Co/TiO2 Fischer-Tropsch catalysts, Appl. Catal. A 208(2001) 177-184.[31] A. Feller, M. Claeys, E. van Steen, Cobalt cluster effects in zirconium promoted Co/SiO2 Fischer-Tropsch catalysts, J. Catal. 185(1999) 120-130.[32] C.I. Ahn, Y.J. Lee, S.H. Um, J.W. Bae, Ordered mesoporous CoMOx (M=Al or Zr) mixed oxides for Fischer-Tropsch synthesis, Chem. Commun. 52(2016) 4820-4823.[33] S. Rojanapipatkul, B. Jongsomjit, Synthesis of cobalt on cobalt-aluminate via solvothermal method and its catalytic properties for carbon monoxide hydrogenation, Catal. Commun. 10(2008) 232-236.[34] J.-Y. Luo, M. Meng, X. Li, X.-G. Li, Y.-Q. Zha, T.-D. Hu, Y.-N. Xie, J. Zhang, Mesoporous Co3O4-CeO2 and Pd/Co3O4-CeO2 catalysts:synthesis, characterization and mechanistic study of their catalytic properties for low-temperature CO oxidation, J. Catal. 254(2008) 310-324.[35] S.D. Jones, L.M. Neal, M.L. Everett, G.B. Hoflund, H.E. Hagelin-Weaver, Characterization of ZrO2-promoted Cu/ZnO/nano-Al2O3 methanol steam reforming catalysts, Appl. Surf. Sci. 256(2010) 7345-7353.[36] P. Gao, F. Li, N. Zhao, F.K. Xiao, W. Wei, L.S. Zhong, Y.H. Sun, Influence of modifier (Mn, La, Ce, Zr and Y) on the performance of Cu/Zn/Al catalysts via hydrotalcite-like precursors for CO2 hydrogenation to methanol, Appl. Catal. A 468(2013) 442-452.[37] L.T. Jia, K.G. Fang, J.G. Chen, Y.H. Sun, Cobalt loss from Co-ZrO2 catalyst for FischerTropsch synthesis in continuously stirred tank reactor, React. Kinet. Catal. Lett. 93(2008) 351-358.[38] T. Nowitzki, A.F. Carlsson, O. Martyanov, M. Naschitzki, V. Zielasek, T. Risse, M. Schmal, H.J. Freund, M. Baumer, Oxidation of alumina-supported Co and Co-Pd model catalysts for the Fischer-Tropsch reaction, J. Phys. Chem. C 111(2007) 8566-8572.[39] R. Razzaq, C. Li, M. Usman, K. Suzuki, S. Zhang, A highly active and stable Co4N/γ-Al2O3 catalyst for CO and CO2 methanation to produce synthetic natural gas (SNG), Chem. Eng. J. 262(2015) 1090-1098.[40] G. Busca, Spectroscopic characterization of the acid properties of metal oxide catalysts, Catal. Today 41(1998) 191-206.[41] F. Benaliouche, Y. Boucheffa, P. Ayrault, S. Mignard, P. Magnoux, NH3-TPD and FTIR spectroscopy of pyridine adsorption studies for characterization of Ag-and Cu-exchanged X zeolites, Microporous Mesoporous Mater. 111(2008) 80-88.[42] G.R. Johnson, A.T. Bell, Effects of Lewis acidity of metal oxide promoters on the activity and selectivity of Co-based Fischer-Tropsch synthesis catalysts, J. Catal. 338(2016) 250-264.[43] X. Tang, J. Li, L. Sun, J. Hao, Origination of N2O from NO reduction by NH3 over β-MnO2 and α-Mn2O3, Appl. Catal. B 99(2010) 156-162.[44] R.W. StevensJr., S.S.C. Chuang, B.H. Davis, In situ infrared study of pyridine adsorption/desorption dynamics over sulfated zirconia and Pt-promoted sulfated zirconia, Appl. Catal. A 252(2003) 57-74. |