[1] L. Xu, F. Wang, M. Chen, J. Zhang, K. Yuan, L. Wang, K. Wu, G. Xu, W. Chen, CO2 methanation over a Ni based ordered mesoporous catalyst for the production of synthetic natural gas, RSC Adv. 6(2016) 28489-28499.[2] A. Beuls, C. Swalus, M. Jacquemin, G. Heyen, A. Karelovic, P. Ruiz, Methanation of CO2:Further insight into the mechanism over Rh/γ-Al2O3 catalyst, Appl. Catal. B 113-114(2012) 2-10.[3] A. Zhao, W. Ying, H. Zhang, H. Ma, D. Fang, Ni-Al2O3 catalysts prepared by solution combustion method for syngas methanation, Catal. Commun. 17(2012) 34-38.[4] G. Garbarino, P. Riani, L. Magistri, G. Busca, A study of the methanation of carbon dioxide on Ni/Al2O3 catalysts at atmospheric pressure, Int. J. Hydrog. Energy 39(2014) 11557-11565.[5] H. Song, J. Yang, J. Zhao, L. Chou, Methanation of carbon dioxide over a highly dispersed Ni/La2O3 catalyst, Chin. J. Catal. 31(2010) 21-23.[6] J. Liu, C. Li, F. Wang, S. He, H. Chen, Y. Zhao, M. Wei, D.G. Evans, X. Duan, Enhanced low-temperature activity of CO2 methanation over highly-dispersed Ni/TiO2 catalyst, Catal. Sci. Technol. 3(2013) 2627-2633.[7] K. Ray, G. Deo, A potential descriptor for the CO2 hydrogenation to CH4 over Al2O3 supported Ni and Ni-based alloy catalysts, Appl. Catal. B 218(2017) 525-537.[8] F. Ocampo, B. Louis, L. Kiwi-Minsker, A.-C. Roger, Effect of Ce/Zr composition and noble metal promotion on nickel based CexZr1-xO2 catalysts for carbon dioxide methanation, Appl. Catal. A 392(2011) 36-44.[9] G.K. Pradhan, S. Martha, K.M. Parida, Synthesis of multifunctional nanostructured zinc-iron mixed oxide photocatalyst by a simple solution-combustion technique, ACS Appl. Mater. Interfaces 4(2012) 707-713.[10] R. Ghose, H.T. Hwang, A. Varma, Oxidative coupling of methane using catalysts synthesized by solution combustion method, Appl. Catal. A 452(2013) 147-154.[11] S. Jeenpadiphat, D.N. Tungasmita, Esterification of oleic acid and high acid content palm oil over an acid-activated bentonite catalyst, Appl. Clay Sci. 87(2014) 272-277.[12] Y. Jiang, X. Li, Z. Qin, H. Ji, Preparation of Ni/bentonite catalyst and its applications in the catalytic hydrogenation of nitrobenzene to aniline, Chin. J. Chem. Eng. 24(2016) 1195-1200.[13] Y. Zhou, Y. Jiang, Z. Qin, Q. Xie, H. Ji, Influence of Zr, Ce, and La on Co3O4 catalyst for CO2 methanation at low temperature, Chin. J. Chem. Eng. 26(2018) 768-774.[14] Y. Jiang, T. Huang, Y. Xu, X. Li, Z. Qin, H. Ji, Anti-coke properties of acid-treated bentonite-supported nickel-boron catalyst, Chem. Eng. Technol. 41(2018) 175-181.[15] S.L. Gonzalez-Cortes, F.E. Imbert, Fundamentals, properties and applications of solid catalysts prepared by solution combustion synthesis (SCS), Appl. Catal. A 452(2013) 117-131.[16] D. Li, L. Zeng, X. Li, X. Wang, H. Ma, S. Assabumrungrat, J. Gong, Ceria-promoted Ni/SBA-15 catalysts for ethanol steam reforming with enhanced activity and resistance to deactivation, Appl. Catal. B 176-177(2015) 532-541.[17] X. Lu, F. Gu, Q. Liu, J. Gao, Y. Liu, H. Li, L. Jia, G. Xu, Z. Zhong, F. Su, VOx promoted Ni catalysts supported on the modified bentonite for CO and CO2 methanation, Fuel Process. Technol. 135(2015) 34-46.[18] J.L.M.D.L. Cruz, I.V. Castellanos-Ramirez, A. Ortiz-Tapia, E. Buenrostro-Gonzalez, C.D.L.A. Duran-Valencia, S. Lopez-Ramirez, Study of monolayer to multilayer adsorption of asphaltenes on reservoir rock minerals, Colloids Surf. A Physicochem. Eng. Asp. 340(2009) 149-154.[19] S. Jeenpadiphat, D.N. Tungasmita, Acid-activated pillar bentonite as a novel catalyst for the esterification of high FFA oil, Powder Technol. 237(2013) 634-640.[20] M.A.A. Aziz, A.A. Jalil, S. Triwahyono, R.R. Mukti, Y.H. Taufiq-Yap, M.R. Sazegar, Highly active Ni-promoted mesostructured silica nanoparticles for CO2 methanation, Appl. Catal. B 147(2014) 359-368.[21] Y. Liu, W. Zhou, C.Q. Fan, R. Yin, Electrochemical hydrogenation of coal on Ni-based catalysts, Fuel 122(2014) 54-59.[22] Y.-S. Seo, Y.-S. Jung, W.-L. Yoon, I.-G. Jang, T.-W. Lee, The effect of Ni content on a highly active Ni-Al2O3 catalyst prepared by the homogeneous precipitation method, Int. J. Hydrog. Energy 36(2011) 94-102.[23] B. Mile, D. Stirling, M.A. Zammitt, A. Lovell, M. Webb, TPR studies of the effects of preparation conditions on supported nickel catalysts, J. Mol. Catal. 62(1990) 179-198.[24] C.-W. Hu, J. Yao, H.-Q. Yang, Y. Chen, A.-M. Tian, On the inhomogeneity of low nickel loading methanation catalyst, J. Catal. 166(1997) 1-7.[25] M. Zhang, S. Mu, Q. Guan, W. Li, J. Du, A high anticorrosive chromium-free conversion coating prepared with an alkaline conversion bath on electroless Ni-P coating, Appl. Surf. Sci. 349(2015) 108-115.[26] J. Gao, C. Jia, J. Li, M. Zhang, F. Gu, G. Xu, Z. Zhong, F. Su, Ni/Al2O3 catalysts for CO methanation:Effect of Al2O3 supports calcined at different temperatures, J. Energy Chem. 22(2013) 919-927.[27] N. McIntyre, M. Cook, X-ray photoelectron studies on some oxides and hydroxides of cobalt, nickel, and copper, Anal. Chem. 47(1975) 2208-2213.[28] V.V. Kaichev, A.Y. Gladky, I.P. Prosvirin, A.A. Saraev, M. Havecker, A. Knop-Gericke, R. Schlogl, V.I. Bukhtiyarov, In situ XPS study of self-sustained oscillations in catalytic oxidation of propane over nickel, Surf. Sci. 609(2013) 113-118.[29] Y. Huang, X. Chen, Y. Deng, Z. Dan, L. Wang, A novel nickel catalyst derived from layered double hydroxides (LDHs) supported on fluid catalytic cracking catalyst residue (FC3R) for rosin hydrogenation, Chem. Eng. J. 269(2015) 434-443.[30] G. Xanthopoulou, O. Thoda, E.D. Metaxa, G. Vekinis, A. Chroneos, Influence of atomic structure on the nano-nickel-based catalyst activity produced by solution combustion synthesis in the hydrogenation of maleic acid, J. Catal. 348(2017) 9-21.[31] A. Varma, A.S. Mukasyan, A.S. Rogachev, K.V. Manukyan, Solution combustion synthesis of nanoscale materials, Chem. Rev. 116(2016) 14493-14586. |