[1] Z. Liu, R. Yu, Y. Dong, The adsorption behavior and mechanism of Cr(VI) on 3D hierarchical α-Fe2O3 structures exposed by (001) and non-(001) planes, Chem. Eng. J. 309(2017) 815-823. [2] Y. Wen, Z. Tang, Y. Chen, Adsorption of Cr(VI) from aqueous solutions using chitosan-coated fly ash composite as biosorbent, Chem. Eng. J. 175(2011) 110-116. [3] D. Martinetz, U.S. Environmental Protection Agency (US-EPA), Umweltwissenschaften und Schadstoff-Forschung, 1(2) (1989) 6. [4] Y. Ma, W.J. Liu, N. Zhang, Polyethylenimine modified biochar adsorbent for hexavalent chromium removal from the aqueous solution, Bioresour. Technol. 169(2014) 403-408. [5] K.Z. Setshedi, M. Bhaumik, S. Songwane, Exfoliated polypyrrole-organically modified montmorillonite clay nanocomposite as a potential adsorbent for Cr(VI) removal, Chem. Eng. J. 222(2013) 186-197. [6] Y. Huang, X. Lee, F.C. Macazo, Fast and efficient removal of chromium (VI) anionic species by a reusable chitosan-modified multi-walled carbon nanotube composite, Chem. Eng. J. 339(2018) 259-267. [7] W. H. Organization, Guidelines for Drinking-Water Quality, 4th ed., 2011http:// www.who.int/water-sanitation-health/publications/2011/dnq-guidelines/en/index.html. [8] Q. Ji, D. Yu, G. Zhang, Microfluidic flow through poly-aniline supported by lamellarstructured graphene for mass-transfer-enhanced electrocatalytic reduction of hexavalent chromium, Environ. Sci. Technol. 49(2015) 13534-13541. [9] H. Liang, X. Cao, W. Zhang, Robust and highly efficient free-standing carbonaceous nanofiber membranes for water purification, Adv. Funct. Mater. 21(2011) 3851-3858. [10] L.L. Li, X.Q. Feng, R.P. Han, Cr(VI) removal via anion exchange on a silver-triazolate MOF, J. Hazard. Mater. 321(2017) 622-628. [11] L. Lin, X. Xu, C. Papelis, Sorption of metals and metalloids from reverse osmosis concentrate on drinking water treatment solids, Sep. Purif. Technol. 134(2014) 37-45. [12] R. Liang, L. Shen, F. Jing, Preparation of MIL-53(Fe)-reduced graphene oxide nanocomposites by a simple self-assembly strategy for increasing interfacial contact: Efficient visible-light photocatalysts, ACS Appl. Mater. Interfaces 7(2015) 9507-9515. [13] Y.L. Yang, Y.J. Du, K.R. Reddy, Adsorption of Cr(VI) onto SHMP-amended Cabentonite backfills for slurry-trench cutoff walls, GeoShanghai2018, Springer, Singapore, 2018. [14] W. Cai, L. Tan, J. Yu, Synthesis of amino-functionalized mesoporous alumina with enhanced affinity towards Cr(VI) and CO2, Chem. Eng. J. 239(2014) 207-215. [15] Q. Yu, M. Li, P. Ning, Characterization of metal oxide-modifiedwalnut-shell activated carbon and its application for phosphine adsorption: Equilibrium, regeneration, and mechanism studies, J. Wuhan Univ. Technol. 34(2) (2019) 487-495. [16] M.V. Manilo, Z.Z. Choma, S. Barany, Comparative study of Cr(III) adsorption by carbon nanotubes and active carbons, Colloid J. 79(2) (2017) 212-218. [17] J. Ma, Y. He, A facile, versatile approach to hydroxyl-anchored metal oxides with high Cr(VI) adsorption performance in water treatment, Roy. Soc. Open Sci. 3(11) (2016) 160524. [18] P. Yin, Q. Xu, R. Qu, Adsorption of transition metal ions from aqueous solutions onto a novel silica gel matrix inorganic-organic composite material, J. Hazard. Mater. 169(1) (2009) 228-232. [19] G.Y. Yuan, Y. Tian, J. Liu, Schiff base anchored on metal-organic framework for Co(II) removal from aqueous solution, Chem. Eng. J. 326(2017) 691-699. [20] A.Z. Yan, Y.Y. Qin, J.K. Yu, Research on adsorption of Cr(VI) by poly-epichlorohydrindimethylamine (EPIDMA) modified weakly basic anion exchange resin D301, Ecotox. Environ. Safe. 161(2018) 467-473. [21] E.S. Dragan, et al., Kinetics, equilibrium modeling, and thermodynamics on removal of Cr(VI) ions from aqueous solution using novel composites with strong base anion exchanger microspheres embedded into chitosan/poly(vinyl amine) cryogels [J], Chem. Eng. J. 330(2017) 675-691. [22] E.S. Dragan, A.I. Cocarta, M.V. Dinu, Facile fabrication of chitosan/poly(vinyl amine) composite beads with enhanced sorption of Cu2+. Equilibrium, kinetics, and thermodynamics, Chem. Eng. J. 255(2014) 659-669. [23] N.Y. Acelas, B.D. Martin, D. López, B. Jefferson, Selective removal of phosphate from wastewater using hydrated metal oxides dispersed within anionic exchange media, Chemosphere 119(2014) 1353-1360. [24] S. Kalidhasan, A.S.K. Kumar, V. Rajesh, N. Rajesh, An efficient ultrasound assisted approach for the impregnation of room temperature ionic liquid onto dowex 1×8 resin matrix and its application toward the enhanced adsorption of chromium (VI), J. Hazard. Mater. (2012) 249-257213-214. [25] F. Fu, J. Ma, L. Xie, B. Tang, W. Han, S. Lin, Chromium removal using resin supported nanoscale zero-valent iron, J. Environ. Manag. 128(2013) 822-827. [26] F.Q. An, M. Li, X.D. Guo, H.Y. Wang, R.Y. Wu, T.P. Hu, J.F. Gao, W.Z. Jiao, Selective adsorption of AuCl4- on chemically modified D301 resin with containing N/S functional polymer, J. Environ. Chem. Eng. 5(2017) 10-15. [27] F.Q. An, R.Y. Wu, M. Li, T.P. Hu, J.F. Gao, Z.G. Yuan, Adsorption of heavy metal ions by iminodiacetic acid functio-nalized D301 resin: Kinetics, isotherms and thermodynamics, React. Funct. Polym. 118(2017) 42-50. [28] Z. Zhu, et al., Removal of cadmium using MnO2 loaded D301 resin, J. Environ. Sci. 19(2007) 652-656. [29] X. Tian, W. Wang, N. Tian, C. Zhou, C. Yang, Cr(VI) reduction and immobilization by novel carbonaceous modified magnetic Fe3O4/halloysite nanohybrid, J. Hazard. Mater. 309(2016) 151-156. [30] A. Alizadeh, G. Abdi, M.M. Khodaei, M. Ashokkumar, J. Amirian, Graphene oxide/ Fe3O4/SO3H nanohybrid: a new adsorbent for adsorption and reduction of Cr(VI) from aqueous solutions, RSC Adv. 7(24) (2017) 14876-14887. [31] Y.S. Shen, S.L. Wang, S.T. Huang, J.H. Huang, Biosorption of cr(VI) by coconut coir: Spectroscopic investigation on the reaction mechanism of cr(VI) with lignocellulosic material, J. Hazard. Mater. 179(1-3) (2010) 160-165. [32] I. Langmuir, The constitution and fundamental properties of solids and liquids, J. Amer. Chem Soc. 38(1916) 2221-2295. [33] H. Freundlich, Über die adsorption in lösungen [J], Z. Phys. Chem. 57(1906) 385-470. [34] W. Konicki, A. Hełminiak, W. Arabczyk, E. Mijowska, Adsorption of cationicdyeson to Fe@graphitecore-shellmagneticnano composite: Equilibrium, kinetics and thermodynamics, Chem. Eng. Res. Des. 129(2018) 259-270. [35] Y.Q. Jian, M.Y. Li, Q.X. Zeng, Thermodynamics of Cr(VI) adsorption on thiourea chelating ion exchange fiber, Adv. Mater. Res. 894(2014) 121-124. [36] A.K. Meena, K. Kadirvelu, G.K. Mishra, Adsorptive removal of heavy metals from aqueous solution by treated sawdust (Acacia arabica), J. Hazard. Mater. 150(3) (2008) 604-611. [37] J. Shang, M. Zong, Y. Yu, Removal of chromium (VI) from water using nanoscale zerovalent iron particles supported on herb-residue biochar, J. Environ. Manag. 197(2017) 331-337. [38] C.Y. Zhou, D.M. Jia, M. Liu, Removal of glyphosate from aqueous solution using nanosized copper hydroxide modified resin: Equilibrium isotherms and kinetics, J. Chem. Eng. Data 62(2017) 3585-3592. [39] Y. Zang, Q. Yue, Y. Kan, et al., Research on adsorption of Cr(VI) by polyepichlorohydrin-dimethylamine (EPIDMA) modified weakly basic anion exchange resin D301, Ecotox. Environ. Safe. 161(2018) 467-473. [40] B. Liu, L. Dong, Q. Yu, X. Li, F. Wu, A. Tan, S. Luo, Thermodynamic study on the protonation reactions of glyphosate in aqueous solution: Potentiometry, calorimetry and NMR spectroscopy, J. Phys. Chem. B. 120(2016) 2132-2137. [41] D. Jia, Y. Li, X. Shang, C. Li, Iron-impregnated weakly basic resin for the removal of 2-naphthalenesulfonic acid from aqueous solution, J. Chem. Eng. Data 56(2011) 3881-3889. [42] L. Zhou, Y. Liu, S. Liu, Investigation of the adsorption-reduction mechanisms of hexavalent chromium by ramie biochars of different pyrolytic temperatures, Bioresour. Technol. 218(2016) 351-359. [43] X. Li, X. Gao, L. Ai, Mechanistic insight into the interaction and adsorption of Cr(VI) with zeolitic imidazolate framework-67 microcrystals from aqueous solution, Chem. Eng. J. 274(2015) 238-246. [44] X. Sun, L. Yang, Q. Li, Polyethylenimine-functionalized poly(vinyl alcohol) magnetic microspheres as a novel adsorbent for rapid removal of Cr(VI) from aqueous solution, Chem. Eng. J. 262(2015) 101-108. [45] X. Sun, L. Yang, H. Xing, Synthesis of polyethylenimine-functionalized poly(glycidyl methacrylate) magnetic microspheres and their excellent Cr(VI) ion removal properties, Chem. Eng. J. 234(19) (2013) 338-345. [46] S. Hokkanen, A. Bhatnagar, E. Repo, S. Lou, M. Sillanpää, Calcium hydroxyapatite microfibrillated cellulose composite as a potential adsorbent for the removal of Cr (VI) from aqueous solution, Chem. Eng. J. 283(2016) 445-452. [47] J. Zeng, Y. Shao, X. Yi, C. Zhi, Adsorption of Cr (VI) by a weakly basic anion exchange resin D301[J], Chin. J. Environ. Sci. Technol. 27(2004) 111-113. [48] D.M. Jia, M. Liu, J.B. Xia, C.H. Li, Effective removal of aqueous glyphosate using CuFe2O4@biochar derived from phragmites, J. Chem. Technol. Biotechno. 95(1) (2020) 196-204. [49] Y. Deng, Z. Gao, B. Liu, Selective removal of lead from aqueous solutions by ethylenediamine-modified attapulgite, Chem. Eng. J. 223(2013) 91-98. [50] M.K. Kim, S.K. Shanmuga, I.G. Anantha, A novel chitosan functional gel included with multiwall carbon nanotube and substituted polyaniline as adsorbent for efficient removal of chromium ion, Chem. Eng. J. 267(2015) 51-64. [51] Y. Tang, X. Guan, T. Su, Fluoride adsorption onto activated alumina: Modeling the effects of pH and some competing ions, Colloid. Surface. A 337(1-3) (2009) 33-38. [52] Y. Ma, W.J. Liu, N. Zhang, Polyethylenimine modified biochar adsorbent for hexavalent chromium removal from the aqueous solution, Bioresour. Technol. 169(2014) 403-408. [53] G. Bayramoglu, M.Y. Arica, Synthesis of Cr(VI)-imprinted poly(4-vinyl pyridine-cohydroxyethyl methacrylate) particles: Its adsorption propensity to Cr(VI), J. Hazard. Mater. 187(1-3) (2011) 213-221. [54] Y. Wen, Z. Tang, Y. Chen, Adsorption of Cr(VI) from aqueous solutions using chitosan-coated fly ash composite as biosorbent, Chem. Eng. J. 175(2011) 110-116. [55] M. Avila, T. Burks, F. Akhtar, Surface functionalized nanofibers for the removal of chromium(VI) from aqueous solutions, Chem. Eng. J. 245(2014) 201-209. [56] L. Zhang, Adsorption and redox conversion behaviors of Cr(VI) on goethite/carbon microspheres and akaganeite/carbon microspheres composites, Chem. Eng. J. 356(2019) 151-160. [57] H. Zhang, H. Lu, J. Wang, Cr(VI) reduction and Cr(III) immobilization by acinetobacter sp HK-1 with the assistance of a novel quinone/graphene oxide composite, Environ. Sci. Technol. 48(21) (2014) 12876-12885. [58] S.J. Sun, Biosynthesis of β-cyclodextrin modified Schwertmannite and the application in heavy metals adsorption, Powder Technol. 342(2019) 181-192. [59] X. Huang, Y. Liu, S. Liu, Effective removal of Cr(\r, vi\r) using β-cyclodextrin-chitosan modified biochars with adsorption/reduction bifuctional roles, RSC Adv. 6(1) (2016) 94-104. [60] A.P. Grosvenor, B.A. Kobe, M.C. Biesinger, Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds, Surf. Interface Anal. 36(12) (2004) 1564-1574. [61] Z. Dong, L. Zhao, Covalently bonded ionic liquid onto cellulose for fast adsorption and efficient separation of Cr(VI): Batch, column and mechanism investigation, Carbohydr. Polym. 189(2018) 190-197. [62] C. Zheng, H. Zheng, Y. Sun, B. Xu, Y. Wang, X. Zheng, Y. Wang, Simultaneous adsorption and reduction of hexavalent chromium on the poly (4-vinyl pyridine) decorated magnetic chitosan biopolymer in aqueous solution, Bioresour. Technol. 293(2019) 122038. |