[1] K. Aasberg-Petersen, I. Dybkjær, C.V. Ovesen, N.C. Schjødt, J. Sehested, S.G. Thomsen, Natural gas to synthesis gas—Catalysts and catalytic processes, J. Nat. Gas Sci. Eng. 3(2) (2011) 423-459. [2] J.A. Labinger, Selective alkane oxidation: Hot and cold approaches to a hot problem, J. Mol. Catal. A Chem. 220(1) (2004) 27-35. [3] N. Dietl, M. Schlangen, H. Schwarz, Thermal hydrogen-atom transfer from methane: The role of radicals and spin states in oxo-cluster chemistry, Angew. Chem.-Int. Edit. 51(23) (2012) 5544-5555. [4] G.I. Panov, V. Sobolev, A. Kharitonov, The role of iron in N2O decomposition on ZSM-5 zeolite and reactivity of the surface oxygen formed, J. Mol. Catal. A Chem. 61(1) (1990) 85-97. [5] G.I. Panov, A.K. Uriarte, M.A. Rodkin, V.I. Sobolev, Generation of active oxygen species on solid surfaces: Opportunity for novel oxidation technologies over zeolites, Catal. Today 41(4) (1998) 365-385. [6] E.V. Starokon, M.V. Parfenov, L.V. Pirutko, S.I. Abornev, G.I. Panov, Room-temperature oxidation of methane by α-oxygen and extraction of products from the FeZSM-5 surface, J. Phys. Chem. C 115(5) (2011) 2155-2161. [7] M.V. Parfenov, E.V. Starokon, L.V. Pirutko, G.I. Panov, Quasicatalytic and catalytic oxidation of methane to methanol by nitrous oxide over FeZSM-5 zeolite, J. Catal. 318(2014) 14-21. [8] B.R. Wood, J.A. Reimer, A.T. Bell, M.T. Janicke, K.C. Ott, Methanol formation on Fe/AlMFI via the oxidation of methane by nitrous oxide, J. Catal. 225(2) (2004) 300-306. [9] K.A. Dubkov, N.S. Ovanesyan, A.A. Shteinman, E.V. Starokon, G.I. Panov, Evolution of iron states and formation of α-sites upon activation of FeZSM-5 zeolites, J. Catal. 207(2) (2002) 341-352. [10] J. Taboada, A. Overweg, P. Kooyman, I. Arends, G. Mul, Following the evolution of iron from framework to extra-framework positions in isomorphously substituted [Fe,Al]MFI with Fe Mssbauer spectroscopy, J. Catal. 231(1) (2005) 56-66. [11] P. Sazama, B. Wichterlová, E. Tábor, P. Šťastný, N.K. Sathu, Z. Sobalík, J. Dědeček, Š. Sklenák, P. Klein, A. Vondrová, Tailoring of the structure of Fe-cationic species in Fe-ZSM-5 by distribution of Al atoms in the framework for N2O decomposition and NH3-SCR-NOx, J. Catal. 312(2014) 123-138. [12] A. Rosa, G. Ricciardi, E. Jan Baerends, Is [FeO](2+) the active center also in iron containing zeolites? A density functional theory study of methane hydroxylation catalysis by Fe-ZSM-5 zeolite, Inorg. Chem. 49(8) (2010) 3866-3880. [13] U. Miranda, A.J.C. Varandas, I.G. Kaplan, On the ferryl catalyst: electronic structure and optimized ab initio geometry, Chem. Phys. Lett. 595-596(2014) 175-179. [14] L. Kiwi-Minsker, D.A. Bulushev, A. Renken, Active sites in HZSM-5 with low Fe content for the formation of surface oxygen by decomposing N2O: is every deposited oxygen active? J. Catal. 219(2) (2003) 273-285. [15] A. Zecchina, M.L. Rivallan, G. Berlier, C. Lamberti, G. Ricchiardi, Structure and nuclearity of active sites in Fe-zeolites: comparison with iron sites in enzymes and homogeneous catalysts, Phys. Chem. Chem. Phys. 9(27) (2007) 3483-3499. [16] E.V. Starokon, K.A. Dubkov, L.V. Pirutko, G.I. Panov, Mechanisms of iron activation on Fe-containing zeolites and the charge of α-oxygen, Top. Catal. 23(1) (2003) 137-143. [17] B.E. Snyder, P. Vanelderen, M.L. Bols, S.D. Hallaert, L.H. Bottger, L. Ungur, K. Pierloot, R.A. Schoonheydt, B.F. Sels, E.I. Solomon, The active site of low-temperature methane hydroxylation in iron-containing zeolites, Nature 536(7616) (2016) 317-321. [18] J. Wang, H. Xia, X. Ju, Z. Feng, F. Fan, C. Li, Influence of extra-framework Al on the structure of the active iron sites in Fe/ZSM-35, J. Catal. 300(2013) 251-259. [19] H. Jouini, I. Mejri, C. Petitto, J. Martinez-Ortigosa, A. Vidal-Moya, M. Mhamdi, T. Blasco, G. Delahay, Characterization and NH3-SCR reactivity of Cu-Fe-ZSM-5 catalysts prepared by solid state ion exchange: the metal exchange order effect, Microporous Mesoporous Mater. 260(2018) 217-226. [20] L. Fan, D. Cheng, L. Song, F. Chen, X. Zhan, Direct conversion of CH4 to oxy-organics by N2O using freeze-drying FeZSM-5, Chem. Eng. J. 369(2019) 522-528. [21] L. Fan, D. Cheng, F. Chen, X. Zhan, Preparation of highly dispersed iron species over ZSM-5 with enhanced metal-support interaction through freeze-drying impregnation, Chin. J. Catal. 40(7) (2019) 1109-1115. [22] X. Wang, J. Long, G. Yan, G. Zhang, X. Fu, J.-M. Basset, F. Lefebvre, Construction of highly dispersed mononuclear iron-oxo species in the supercages of Y zeolite by use of surface organometallic chemistry, Microporous Mesoporous Mater. 108(1-3) (2008) 258-265. [23] G. Wu, F. Hei, N. Zhang, N. Guan, L. Li, W. Grünert, Oxidative dehydrogenation of propane with nitrous oxide over Fe-ZSM-5 prepared by grafting: characterization and performance, Appl. Catal. A-Gen. 468(2013) 230-239. [24] J. Zhu, L. Fan, L. Song, F. Chen, D. Cheng, CH4 oxidation to oxygenates with N2O over iron-containing Y zeolites: effect of preparation, Chin. J. Chem. Eng. 26(10) (2018) 2064-2069. [25] H.V. Le, S. Parishan, A. Sagaltchik, C. Göbel, C. Schlesiger, W. Malzer, A. Trunschke, R. Schomäcker, A. Thomas, Solid-state ion-exchanged Cu/Mordenite catalysts for the direct conversion of methane to methanol, ACS Catal. 7(2) (2017) 1403-1412. [26] M.M.J. Treacy, J.B. Higgins, Collection of simulated XRD powder patterns for zeolites, Elsevier, New York, 2007. [27] G. Qi, R.T. Yang, Ultra-active Fe/ZSM-5 catalyst for selective catalytic reduction of nitric oxide with ammonia, Appl. Catal. B-Environ. 60(1-2) (2005) 13-22. [28] K.K. Andersson, P.P. Schmidt, B. Katterle, K.R. Strand, A.E. Palmer, S.K. Lee, E.I. Solomon, A. Graslund, A.L. Barra, Examples of high-frequency EPR studies in bioinorganic chemistry, J. Biol. Inorg. Chem. 8(3) (2003) 235-247. [29] J. Krzystek, A. Ozarowski, J. Telser, Multi-frequency, high-field EPR as a powerful tool to accurately determine zero-field splitting in high-spin transition metal coordination complexes, Coord. Chem. Rev. 250(17-18) (2006) 2308-2324. [30] H.-Y. Chen, E.-M. El-Malki, X. Wang, R. Van Santen, W. Sachtler, Identification of active sites and adsorption complexes in Fe/MFI catalysts for NOx reduction, J. Mol. Catal. A Chem. 162(1-2) (2000) 159-174. [31] M. Santhoshkumar, M. Schwidder, W. Grunert, U. Bentrup, A. Bruckner, Selective reduction of NO with Fe-ZSM-5 catalysts of low Fe content: part II. Assessing the function of different Fe sites by spectroscopic in situ studies, J. Catal. 239(1) (2006) 173-186. [32] D. Goldfarb, K. Strohmaier, D. Vaughan, H. Thomann, O. Poluektov, J. Schmidt, Studies of framework iron in zeolites by pulsed ENDOR at 95 GHz, J. Am. Chem. Soc. 118(19) (1996) 4665-4671. [33] D. Meloni, Activity and deactivation of Fe-MFI catalysts for benzene hydroxylation to phenol by N2O, J. Catal. 214(2) (2003) 169-178. [34] G.I. Panov, Advances in oxidation catalysis: Oxidation of benzene to phenol by nutrous oxide, Cattech 4(1) (2000) 18-31. [35] I. Yuranov, D. Bulushev, A. Renken, L. Kiwiminsker, Benzene hydroxylation over FeZSM-5 catalysts: which Fe sites are active? J. Catal. 227(1) (2004) 138-147. [36] H. Tippins, Charge-transfer spectra of transition-metal ions in corundum, Phys. Rev. B 1(1) (1970) 126-135. [37] K. Sun, H. Xia, Z. Feng, R. Vansanten, E. Hensen, C. Li, Active sites in Fe/ZSM-5 for nitrous oxide decomposition and benzene hydroxylation with nitrous oxide, J. Catal. 254(2) (2008) 383-396. [38] H. Xia, K. Sun, F. Fan, K. Sun, W. Su, Z. Feng, P. Ying, C. Li, Effect of extra-framework gallium on the structure of iron species in Fe/ZSM-5, J. Catal. 259(2) (2008) 269-275. [39] M. Schwidder, M. Kumar, K. Klementiev, M. Pohl, A. Bruckner, W. Grunert, Selective reduction of NO with Fe-ZSM-5 catalysts of low Fe content: part I. relations between active site structure and catalytic performance, J. Catal. 231(2) (2005) 314-330. [40] S. Sklenak, P. C. Andrikopoulos, B. Boekfa, B. Jansang, J. Nováková, L. Benco, T. Bucko, J. Hafner, J. Dědeček, Z. Sobalík, N2O ecomposition ovr Fe-zeolites: structure of the active sites and the origin of the distinct reactivity of Fe-ferrierite, Fe-ZSM-5, and Fe-beta. A combined periodic DFT and multispectral study, J. Catal., 272(2) (2010) 262-274. [41] K. Sun, H. Xia, E. Hensen, R. Vansanten, C. Li, Chemistry of N2O decomposition on active sites with different nature: effect of high-temperature treatment of Fe/ZSM-5, J. Catal. 238(1) (2006) 186-195. [42] D.M. Kurtz Jr., Oxo-and hydroxo-bridged diiron complexes: A chemical perspective on a biological unit, Chem. Rev. 90(4) (1990) 585-606. [43] A. Ates, A. Reitzmann, Experimental techniques for investigating the surface oxygen formation in the N2O decomposition on Fe-MFI zeolites, Chem. Eng. J. 134(1-3) (2007) 218-227. [44] J. Barras, J. Klinowski, D.W. McComb, 27Al and 29Si solid-state NMR studies of dealuminated mordenite, Phys. Chem. Chem. Phys. 90(24) (1994) 3719-3723. [45] T.H. Chen, B.H. Wouters, P.J. Grobet, Aluminium coordinations in zeolite mordenite by 27Al multiple quantum MAS NMR spectroscopy, Eur. J. Inorg. Chem. 2000(2) (2000) 281-285. [46] L. Fan, Study on Fe-based zeolite catalysts for direct conversion of CH4 into oxyorganics by N2O, Ph. D. Thesis, Zhejiang Univ., China, 2019. [47] Y.K. Chow, N.F. Dummer, J.H. Carter, C. Williams, G. Shaw, D.J. Willock, S.H. Taylor, S. Yacob, R.J. Meyer, M.M. Bhasin, G.J. Hutchings, Investigating the influence of acid sites in continuous methane oxidation with N2O over Fe/MFI zeolites, Catal. Sci. Technol. 8(1) (2018) 154-163. [48] K.S. Park, J.H. Kim, S.H. Park, D.J. Moon, H.-S. Roh, C.-H. Chung, S.H. Um, J.-H. Choi, J. W. Bae, Direct activation of CH4 to oxygenates and unsaturated hydrocarbons using N2O on Fe-modified zeolites, J. Mol. Catal. A Chem. 426(2017) 130-140. [49] E.V. Starokon, M.V. Parfenov, S.S. Arzumanov, L.V. Pirutko, A.G. Stepanov, G.I. Panov, Oxidation of methane to methanol on the surface of FeZSM-5 zeolite, J. Catal. 300(2013) 47-54. [50] L. V. Pirutko, V. S. Chernyavsky, E. V. Starokon, A. A. Ivanov, A. S. Kharitonov, G. I. Panov, The role of α-sites in N2O decomposition over FeZSM-5. Comparison with the oxidation of benzene to phenol, Appl. Catal. B-Environ., 91(1-2) (2009) 174-179. |