Chinese Journal of Chemical Engineering ›› 2021, Vol. 38 ›› Issue (10): 18-29.DOI: 10.1016/j.cjche.2021.04.034
• Reviews • Previous Articles Next Articles
Geqian Fang1,2, Jian Lin1, Xiaodong Wang1
Received:
2021-02-04
Revised:
2021-04-13
Online:
2021-12-02
Published:
2021-10-28
Contact:
Jian Lin, Xiaodong Wang
Supported by:
Geqian Fang1,2, Jian Lin1, Xiaodong Wang1
通讯作者:
Jian Lin, Xiaodong Wang
基金资助:
Geqian Fang, Jian Lin, Xiaodong Wang. Low-temperature conversion of methane to oxygenates by supported metal catalysts: From nanoparticles to single atoms[J]. Chinese Journal of Chemical Engineering, 2021, 38(10): 18-29.
Geqian Fang, Jian Lin, Xiaodong Wang. Low-temperature conversion of methane to oxygenates by supported metal catalysts: From nanoparticles to single atoms[J]. 中国化学工程学报, 2021, 38(10): 18-29.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2021.04.034
[1] P. Schwach, X.L. Pan, X.H. Bao, Direct conversion of methane to value-added chemicals over heterogeneous catalysts: Challenges and prospects, Chem. Rev. 117 (13) (2017) 8497-8520 [2] W. Taifan, J. Baltrusaitis, CH4 conversion to value added products: Potential, limitations and extensions of a single step heterogeneous catalysis, Appl. Catal. B: Environ. 198 (2016) 525-547 [3] T. Zhang, A.Q. Wang, H. Liu, X.Y. Liu, Direct conversion of methane on single-atom catalysts, Sci. Sin.-Chim. 51 (2) (2021) 175-187 [4] Z.J. Yang, F. Wang, Differentiation of alkane isomers through binding energy spectra and total momentum cross sections, New J. Chem. 38 (3) (2014) 1031 [5] J. Berkowitz, J.P. Greene, H. Cho, B. Ruščić, Photoionization mass spectrometric studies of SiHnull (n=1-4), J. Chem. Phys. 86 (3) (1987) 1235-1248 [6] R. Horn, R. Schlogl, Methane activation by heterogeneous catalysis, Catal. Lett. 145 (1) (2015) 23-39 [7] M. Ravi, M. Ranocchiari, J.A. Van Bokhoven, The direct catalytic oxidation of methane to methanol-A critical assessment, Angew. Chem. Int. Ed. 56 (52) (2017) 16464-16483 [8] P. Tomkins, M. Ranocchiari, J.A. van Bokhoven, Direct conversion of methane to methanol under mild conditions over Cu-zeolites and beyond, Acc. Chem. Res. 50 (2) (2017) 418-425 [9] J. Xie, R. Jin, A. Li, Y. Bi, Q. Ruan, Y. Deng, Y. Zhang, S. Yao, G. Sankar, D. Ma, J. Tang, Highly selective oxidation of methane to methanol at ambient conditions by titanium dioxide-supported iron species, Nature Catal. 1 (11) (2018) 889-896 [10] H. Schulz, Short history and present trends of Fischer-Tropsch synthesis, Appl. Catal. A: Gen. 186 (1-2) (1999) 3-12 [11] V.L. Sushkevich, D. Palagin, M. Ranocchiari, J.A. van Bokhoven, Selective anaerobic oxidation of methane enables direct synthesis of methanol, Science 356 (6337) (2017) 523-527 [12] B.W. Wang, S. Albarracín-Suazo, Y. Pagán-Torres, E. Nikolla, Advances in methane conversion processes, Catal. Today 285 (2017) 147-158 [13] O.A. Mironov, S.M. Bischof, M.M. Konnick, B.G. Hashiguchi, V.R. Ziatdinov, W. A. Goddard 3rd, M. Ahlquist, R.A. Periana, Using reduced catalysts for oxidation reactions: Mechanistic studies of the “Periana-Catalytica” system for CH4 oxidation, J. Am. Chem. Soc. 135 (39) (2013) 14644-14658 [14] R.A. Periana, O. Mironov, D. Taube, G. Bhalla, C.J. Jones, Catalytic, oxidative condensation of CH4 to CH3COOH in one step via CH activation, Science 301 (5634) (2003) 814-818 [15] V.L. Sushkevich, J.A. van Bokhoven, Methane-to-methanol: Activity descriptors in copper-exchanged zeolites for the rational design of materials, ACS Catal. 9 (7) (2019) 6293-6304 [16] S.E. Bozbag, P. Sot, M. Nachtegaal, M. Ranocchiari, J.A. van Bokhoven, C. Mesters, Direct stepwise oxidation of methane to methanol over Cu-SiO2, ACS Catal. 8 (7) (2018) 5721-5731 [17] C.Y. Ruan, Z.Q. Huang, J. Lin, L. Li, X.Y. Liu, M. Tian, C.D. Huang, C.R. Chang, J. Li, X.D. Wang, Synergy of the catalytic activation on Ni and the CeO2-TiO2/Ce2Ti2O7 stoichiometric redox cycle for dramatically enhanced solar fuel production, Energy Environ. Sci. 12 (2) (2019) 767-779 [18] L. Zhang, W. Xu, J. Wu, Y. Hu, C. Huang, Y. Zhu, M. Tian, Y. Kang, X. Pan, Y. Su, J. Wang, X. Wang, Identifying the role of A-site cations in modulating oxygen capacity of iron-based perovskite for enhanced chemical looping methane-to-syngas conversion, ACS Catal. 10 (16) (2020) 9420-9430 [19] M. Tian, X.D. Wang, T. Zhang, Hexaaluminates: A review of the structure, synthesis and catalytic performance, Catal. Sci. Technol. 6 (7) (2016) 1984-2004 [20] X.G. Meng, X.J. Cui, N.P. Rajan, L. Yu, D.H. Deng, X.H. Bao, Direct methane conversion under mild condition by thermo-, electro-, or photocatalysis, Chem 5 (9) (2019) 2296-2325 [21] Y.T. Liu, D.H. Deng, X.H. Bao, Catalysis for selected C1 chemistry, Chem 6 (10) (2020) 2497-2514 [22] Q.H. Yang, Q. Xu, H.L. Jiang, Metal-organic frameworks meet metal nanoparticles: Synergistic effect for enhanced catalysis, Chem. Soc. Rev. 46 (15) (2017) 4774-4808 [23] J.L. Shi, On the synergetic catalytic effect in heterogeneous nanocomposite catalysts, Chem. Rev. 113 (3) (2013) 2139-2181 [24] Z. Li, S. Ji, Y. Liu, X. Cao, S. Tian, Y. Chen, Z. Niu, Y. Li, Well-defined materials for heterogeneous catalysis: From nanoparticles to isolated single-atom sites, Chem. Rev. 120 (2) (2020) 623-682 [25] K.J. Zhen, M.M. Khan, C.H. Mak, K.B. Lewis, G.A. Somorjai, Partial oxidation of methane with nitrous oxide over V2O5-SiO2 catalyst, J. Catal. 94 (1985) 501-507 [26] S.H. Taylor, J.S.J. Hargreaves, G.J. Hutchings, R.W. Joyner, C.W. Lembacher, The partial oxidation of methane to methanol: An approach to catalyst design, Catal. Today 42 (3) (1998) 217-224 [27] G.O. Alptekin, A.M. Herring, D.L. Williamson, T.R. Ohno, R.L. McCormick, Methane partial oxidation by unsupported and silica supported iron phosphate catalysts, J. Catal. 181 (1) (1999) 104-112 [28] B.T. Qiao, A.Q. Wang, X.F. Yang, L.F. Allard, Z. Jiang, Y.T. Cui, J.Y. Liu, J. Li, T. Zhang, Single-atom catalysis of CO oxidation using Pt1/FeOnull, Nat. Chem. 3 (8) (2011) 634-641 [29] J. Lin, A.Q. Wang, B.T. Qiao, X.Y. Liu, X.F. Yang, X.D. Wang, J.X. Liang, J. Li, J.Y. Liu, T. Zhang, Remarkable performance of Ir1/FeO(x) single-atom catalyst in water gas shift reaction, J. Am. Chem. Soc. 135 (41) (2013) 15314-15317 [30] J.X. Liang, J. Lin, J.Y. Liu, X.D. Wang, T. Zhang, J. Li, Dual metal active sites in an Ir1 /FeOnull single-atom catalyst: A redox mechanism for the water-gas shift reaction, Angew. Chem. Int. Ed. Engl. 59 (31) (2020) 12868-12875 [31] Y. Chen, J. Lin, L. Li, B. Qiao, J. Liu, Y. Su, X. Wang, Identifying size effects of Pt as single atoms and nanoparticles supported on FeOnull for the water-gas shift reaction, ACS Catal. 8 (2) (2018) 859-868 [32] Y. Lou, Y.P. Zheng, X. Li, N. Ta, J. Xu, Y.F. Nie, K. Cho, J.Y. Liu, Pocketlike active site of Rh1/MoS2 single-atom catalyst for selective crotonaldehyde hydrogenation, J Am. Chem. Soc. 141 (49) (2019) 19289-19295 [33] Y. Lou, Y. Cai, W. Hu, L. Wang, Q. Dai, W. Zhan, Y. Guo, P. Hu, X.-M. Cao, J. Liu, Y. Guo, Identification of active area as active center for CO oxidation over single Au atom catalyst, ACS Catal. 10 (11) (2020) 6094-6101 [34] C. Hammond, M.M. Forde, M.H. Ab Rahim, A. Thetford, Q. He, R.L. Jenkins, N. Dimitratos, J.A. Lopez-Sanchez, N.F. Dummer, D.M. Murphy, A.F. Carley, S.H. Taylor, D.J. Willock, E.E. Stangland, J. Kang, H. Hagen, C.J. Kiely, G.J. Hutchings, Direct catalytic conversion of methane to methanol in an aqueous medium by using copper-promoted Fe-ZSM-5, Angew. Chem. 124 (21) (2012) 5219-5223 [35] D.Y. Osadchii, A.I. Olivos-Suarez, Á. Szécsényi, G.N. Li, M.A. Nasalevich, I.A. Dugulan, P.S. Crespo, E.J.M. Hensen, S.L. Veber, M.V. Fedin, G. Sankar, E.A. Pidko, J. Gascon, Isolated Fe sites in metal organic frameworks catalyze the direct conversion of methane to methanol, ACS Catal. 8 (6) (2018) 5542-5548 [36] W.S. Zhao, Y.N. Shi, Y.H. Jiang, X.F. Zhang, C. Long, P.F. An, Y.F. Zhu, S.X. Shao, Z. Yan, G.D. Li, Z.Y. Tang, Fe-O clusters anchored on nodes of metal-organic frameworks for direct methane oxidation, Angew. Chem. Int. Ed. Engl. 60 (11) (2021) 5811-5815 [37] R.D. Armstrong, V. Peneau, N. Ritterskamp, C.J. Kiely, S.H. Taylor, G.J. Hutchings, The role of copper speciation in the low temperature oxidative upgrading of short chain alkanes over Cu/ZSM-5 catalysts, Chemphyschem 19 (4) (2018) 469-478 [38] C.C. Liu, C.Y. Mou, S.S.F. Yu, S.I. Chan, Heterogeneous formulation of the tricopper complex for efficient catalytic conversion of methane into methanol at ambient temperature and pressure, Energy Environ. Sci. 9 (4) (2016) 1361-1374 [39] M.H. Ab Rahim, M.M. Forde, R.L. Jenkins, C. Hammond, Q. He, N. Dimitratos, J.A. Lopez-Sanchez, A.F. Carley, S.H. Taylor, D.J. Willock, D.M. Murphy, C.J. Kiely, G.J. Hutchings, Oxidation of methane to methanol with hydrogen peroxide using supported gold-palladium alloy nanoparticles, Angew. Chem. Int. Ed. Engl. 52 (4) (2013) 1280-1284 [40] Z. Jin, L. Wang, E. Zuidema, K. Mondal, M. Zhang, J. Zhang, C.T. Wang, X.J. Meng, H.Q. Yang, C. Mesters, F.S. Xiao, Hydrophobic zeolite modification for in situ peroxide formation in methane oxidation to methanol, Science 367 (6474) (2020) 193-197 [41] N. Agarwal, S.J. Freakley, R.U. McVicker, S.M. Althahban, N. Dimitratos, Q. He, D.J. Morgan, R.L. Jenkins, D.J. Willock, S.H. Taylor, C.J. Kiely, G.J. Hutchings, Aqueous Au-Pd colloids catalyze selective CH4 oxidation to CH3OH with O2 under mild conditions, Science 358 (6360) (2017) 223-227 [42] R. McVicker, N. Agarwal, S.J. Freakley, Q. He, S. Althahban, S.H. Taylor, C.J. Kiely, G.J. Hutchings, Low temperature selective oxidation of methane using gold-palladium colloids, Catal. Today 342 (2020) 32-38 [43] R. Serra-Maia, F.M. Michel, Y. Kang, E.A. Stach, Decomposition of hydrogen peroxide catalyzed by AuPd nanocatalysts during methane oxidation to methanol, ACS Catal. 10 (9) (2020) 5115-5123 [44] S.X. Bai, Q. Yao, Y. Xu, K.L. Cao, X.Q. Huang, Strong synergy in a lichen-like RuCu nanosheet boosts the direct methane oxidation to methanol, Nano Energy 71 (2020) 104566 [45] C. Samanta, V.R. Choudhary, Direct oxidation of H2 to H2O2 over Pd/CeO2 catalyst under ambient conditions: Influence of halide ions, Chem. Eng. J. 136 (2-3) (2008) 126-132 [46] S. Bai, Y. Xu, P. Wang, Q. Shao, X. Huan, Activating and converting CH4 to CH3OH via the CuPdO2/CuO nanointerface, ACS Catal. 9 (8) (2019) 6938-6944 [47] L. Yang, J.X. Huang, R. Ma, R. You, H. Zeng, Z.B. Rui, Metal-organic framework-derived IrO2/CuO catalyst for selective oxidation of methane to methanol, ACS Energy Lett. 4 (12) (2019) 2945-2951 [48] L. Yang, J.X. Huang, S. Dai, X. Tang, Z. Hu, M. Li, H. Zeng, R. Luque, P.G. Duan, Z.B. Rui, Uniphase ruthenium-iridium alloy-based electronic regulation for electronic structure-function study in methane oxidation to methanol, J. Mater. Chem. A 8 (45) (2020) 24024-24030 [49] X.J. Cui, H.B. Li, Y. Wang, Y.L. Hu, L. Hua, H.Y. Li, X.W. Han, Q.F. Liu, F. Yang, L.M. He, X.Q. Chen, Q.Y. Li, J.P. Xiao, D.H. Deng, X.H. Bao, Room-temperature methane conversion by graphene-confined single iron atoms, Chem 4 (8) (2018) 1902-1910 [50] K.X. Zhu, S.X. Liang, X.J. Cui, R. Huang, N.B. Wan, L. Hua, H.Y. Li, H.Y. Chen, Z.C. Zhao, G.J. Hou, M.R. Li, Q.K. Jiang, L. Yu, D.H. Deng, Highly efficient conversion of methane to formic acid under mild conditions at ZSM-5-confined Fe-sites, Nano Energy 82 (2021) 105718 [51] T. Yu, Z. Li, W. Jones, Y.S. Liu, Q. He, W.Y. Song, P.F. Du, B. Yang, H.Y. An, D.M. Farmer, C.W. Qiu, A.Q. Wang, B.M. Weckhuysen, A.M. Beale, W.H. Luo, Identifying key mononuclear Fe species for low-temperature methane oxidation, Chem. Sci. 12 (9) (2021) 3152-3160 [52] T. Zhang, D. Zhang, X. Han, T. Dong, X. Guo, C. Song, R. Si, W. Liu, Y. Liu, Z. Zhao, Preassembly strategy to fabricate porous hollow carbonitride spheres inlaid with single Cu-N3 sites for selective oxidation of benzene to phenol, J. Am. Chem. Soc. 140 (49) (2018) 16936-16940 [53] X. Tang, L. Wang, B. Yang, C. Fei, T.Y. Yao, W. Liu, Y. Lou, Q.G. Dai, Y.F. Cai, X.M. Cao, W.C. Zhan, Y.L. Guo, X.Q. Gong, Y. Guo, Direct oxidation of methane to oxygenates on supported single Cu atom catalyst, Appl. Catal. B: Environ. 285 (2021) 119827 [54] W.X. Huang, S.R. Zhang, Y. Tang, Y.T. Li, L. Nguyen, Y.Y. Li, J.J. Shan, D.Q. Xiao, R. Gagne, A.I. Frenkel, F.F. Tao, Low-temperature transformation of methane to methanol on Pd1O4 single sites anchored on the internal surface of microporous silicate, Angew. Chem. Int. Ed. 55 (43) (2016) 13441-13445 [55] Y. Kwon, T.Y. Kim, G. Kwon, J. Yi, H. Lee, Selective activation of methane on single-atom catalyst of rhodium dispersed on zirconia for direct conversion, J. Am. Chem. Soc. 139 (48) (2017) 17694-17699 [56] S.X. Bai, F.F. Liu, B.L. Huang, F. Li, H.P. Lin, T. Wu, M.Z. Sun, J.B. Wu, Q. Shao, Y. Xu, X.Q. Huang, High-efficiency direct methane conversion to oxygenates on a cerium dioxide nanowires supported rhodium single-atom catalyst, Nat. Commun. 11 (1) (2020) 1-9 [57] J.J. Shan, M.W. Li, L.F. Allard, S. Lee, M. Flytzani-Stephanopoulos, Mild oxidation of methane to methanol or acetic acid on supported isolated rhodium catalysts, Nature 551 (7682) (2017) 605-608 [58] Y. Tang, Y.T. Li, V. Fung, D.E. Jiang, W.X. Huang, S.R. Zhang, Y. Iwasawa, T. Sakata, L. Nguyen, X.Y. Zhang, A.I. Frenkel, F.F. Tao, Single rhodium atoms anchored in micropores for efficient transformation of methane under mild conditions, Nat. Commun. 9 (1) (2018) 1231 [59] H. Zhou, T.Y. Liu, X.Y. Zhao, Y.F. Zhao, H. Lv, S. Fang, X.Q. Wang, F.Y. Zhou, Q. Xu, J. Xu, C. Xiong, Z.G. Xue, K. Wang, W.C. Cheong, W. Xi, L. Gu, T. Yao, S.Q. Wei, X. Hong, J. Luo, Y.F. Li, Y.E. Wu, Frontispiece: A supported nickel catalyst stabilized by a surface digging effect for efficient methane oxidation, Angew. Chem. Int. Ed [60] Q.K. Shen, C.Y. Cao, R.K. Huang, L. Zhu, X. Zhou, Q.H. Zhang, L. Gu, W.G. Song, Single chromium atoms supported on titanium dioxide nanoparticles for synergic catalytic methane conversion under mild conditions, Angew. Chem. Int. Ed. 59 (3) (2020) 1216-1219 [61] K.A. Dubkov, N.S. Ovanesyan, A.A. Shteinman, E.V. Starokon, G.I. Panov, Evolution of iron states and formation of α-sites upon activation of FeZSM-5 zeolites, J. Catal. 207 (2) (2002) 341-352 [62] M.O. Ross, A.C. Rosenzweig, A tale of two methane monooxygenases, J. Biol. Inorg. Chem. 22 (2-3) (2017) 307-319 [63] J.C. da Silva, R.C. Pennifold, J.N. Harvey, W.R. Rocha, A radical rebound mechanism for the methane oxidation reaction promoted by the dicopper center of a pMMO enzyme: A computational perspective, Dalton Trans. 45 (6) (2016) 2492-2504 [64] C. Hammond, R.L. Jenkins, N. Dimitratos, J.A. Lopez-Sanchez, M.H. ab Rahim, M.M. Forde, A. Thetford, D.M. Murphy, H. Hagen, E.E. Stangland, J.M. Moulijn, S.H. Taylor, D.J. Willock, G.J. Hutchings, Catalytic and mechanistic insights of the low-temperature selective oxidation of methane over Cu-promoted Fe-ZSM-5, Chemistry 18 (49) (2012) 15735-15745 [65] K. Yoshizawa, Two-step concerted mechanism for methane hydroxylation on the diiron active site of soluble methane monooxygenase, J. Inorg. Biochem. 78 (1) (2000) 23-34 [66] C. Hammond, N. Dimitratos, R.L. Jenkins, J.A. Lopez-Sanchez, S.A. Kondrat, M. Hasbi ab Rahim, M.M. Forde, A. Thetford, S.H. Taylor, H. Hagen, E.E. Stangland, J.H. Kang, J.M. Moulijn, D.J. Willock, G.J. Hutchings, Elucidation and evolution of the active component within Cu/Fe/ZSM-5 for catalytic methane oxidation: From synthesis to catalysis, ACS Catal. 3 (4) (2013) 689-699 [67] C. Hammond, I. Hermans, N. Dimitratos, Biomimetic oxidation with Fe-ZSM-5 and H2O2? identification of an active, extra-framework binuclear core and an FeIIIOOH intermediate with resonance-enhanced Raman spectroscopy, ChemCatChem 7 (3) (2015) 434-440 [68] C. Hammond, N. Dimitratos, J.A. Lopez-Sanchez, R.L. Jenkins, G. Whiting, S.A. Kondrat, M.H. ab Rahim, M.M. Forde, A. Thetford, H. Hagen, E.E. Stangland, J.M. Moulijn, S.H. Taylor, D.J. Willock, G.J. Hutchings, Aqueous-phase methane oxidation over Fe-MFI zeolites; promotion through isomorphous framework substitution, ACS Catal. 3 (8) (2013) 1835-1844 [69] S. Al-Shihri, C.J. Richard, D. Chadwick, Selective oxidation of methane to methanol over ZSM-5 catalysts in aqueous hydrogen peroxide: Role of formaldehyde, ChemCatChem 9 (7) (2017) 1276-1283 [70] C. Kalamaras, D. Palomas, R. Bos, A. Horton, M. Crimmin, K. Hellgardt, Selective oxidation of methane to methanol over Cu- and Fe-exchanged zeolites: The effect of Si/Al molar ratio, Catal. Lett. 146 (2) (2016) 483-492 [71] Á. Szécsényi, G.N. Li, J. Gascon, E.A. Pidko, Mechanistic complexity of methane oxidation with H2O2 by single-site Fe/ZSM-5 catalyst, ACS Catal. 8 (9) (2018) 7961-7972 [72] Á. Szécsényi, G.N. Li, J. Gascon, E.A. Pidko, Unraveling reaction networks behind the catalytic oxidation of methane with H2O2 over a mixed-metal MIL-53(Al, Fe) MOF catalyst, Chem. Sci. 9 (33) (2018) 6765-6773 [73] V.L. Sushkevich, D. Palagin, J.A. Van Bokhoven, The effect of the active-site structure on the activity of copper mordenite in the aerobic and anaerobic conversion of methane into methanol, Angew. Chem. Int. Ed. 57 (29) (2018) 8906-8910 [74] M.A. Newton, A.J. Knorpp, A.B. Pinar, V.L. Sushkevich, D. Palagin, J.A. van Bokhoven, On the mechanism underlying the direct conversion of methane to methanol by copper hosted in zeolites; braiding Cu K-edge XANES and reactivity studies, J. Am. Chem. Soc. 140 (32) (2018) 10090-10093 [75] T. Ikuno, J. Zheng, A. Vjunov, M. Sanchez-Sanchez, M.A. Ortuño, D.R. Pahls, J.L. Fulton, D.M. Camaioni, Z.Y. Li, D. Ray, B.L. Mehdi, N.D. Browning, O.K. Farha, J.T. Hupp, C.J. Cramer, L. Gagliardi, J.A. Lercher, Methane oxidation to methanol catalyzed by Cu-oxo clusters stabilized in NU-1000 metal-organic framework, J. Am. Chem. Soc. 139 (30) (2017) 10294-10301 [76] J. Zheng, J.Y. Ye, M.A. Ortuño, J.L. Fulton, O.Y. Gutiérrez, D.M. Camaioni, R.K. Motkuri, Z.Y. Li, T.E. Webber, B.L. Mehdi, N.D. Browning, R.L. Penn, O.K. Farha, J.T. Hupp, D.G. Truhlar, C.J. Cramer, J.A. Lercher, Selective methane oxidation to methanol on Cu-oxo dimers stabilized by zirconia nodes of an NU-1000 metal-organic framework, J. Am. Chem. Soc. 141 (23) (2019) 9292-9304 [77] J. Baek, B. Rungtaweevoranit, X.K. Pei, M. Park, S.C. Fakra, Y.S. Liu, R. Matheu, S.A. Alshmimri, S. Alshehri, C.A. Trickett, G.A. Somorjai, O.M. Yaghi, Bioinspired metal-organic framework catalysts for selective methane oxidation to methanol, J. Am. Chem. Soc. 140 (51) (2018) 18208-18216 [78] Y. Zhou, F. Wei, J. Lin, L. Li, X. Li, H. Qi, X. Pan, X. Liu, C. Huang, S. Lin, X. Wang, Sulfate-modified NiAl mixed oxides as effective C-H bond-breaking agents for the sole production of ethylene from ethane, ACS Catal. 10 (2020) 7619-7629 [79] P. Zhou, F. Lv, N. Li, Y.L. Zhang, Z.J. Mu, Y.H. Tang, J.P. Lai, Y.G. Chao, M.C. Luo, F. Lin, J.H. Zhou, D. Su, S.J. Guo, Strengthening reactive metal-support interaction to stabilize high-density Pt single atoms on electron-deficient g-C3N4 for boosting photocatalytic H2 production, Nano Energy 56 (2019) 127-137 [80] L. Zhao, Y. Zhang, L.B. Huang, X.Z. Liu, Q.H. Zhang, C. He, Z.Y. Wu, L.J. Zhang, J.P. Wu, W.L. Yang, L. Gu, J.S. Hu, L.J. Wan, Cascade anchoring strategy for general mass production of high-loading single-atomic metal-nitrogen catalysts, Nat. Commun. 10 (1) (2019) 1278 [81] X. He, Q. He, Y. Deng, M. Peng, H. Chen, Y. Zhang, S. Yao, M. Zhang, D. Xiao, D. Ma, B. Ge, H. Ji, A versatile route to fabricate single atom catalysts with high chemoselectivity and regioselectivity in hydrogenation, Nat. Commun. 10 (1) (2019) 3663 [82] B. Wu, R.O. Yang, L. Shi, T.J. Lin, X. Yu, M. Huang, K. Gong, F.F. Sun, Z. Jiang, S.G. Li, L.S. Zhong, Y.H. Sun, Cu single-atoms embedded in porous carbon nitride for selective oxidation of methane to oxygenates, Chem. Commun. 56 (93) (2020) 14677-14680 [83] J.F. Weaver, C. Hakanoglu, A. Antony, A. Asthagiri, Alkane activation on crystalline metal oxide surfaces, Chem. Soc. Rev. 43 (22) (2014) 7536-7547 [84] K. Harrath, X. Yu, H. Xiao, J. Li, The Key role of support surface hydrogenation in the CH4 to CH3OH selective oxidation by a ZrO2-supported single-atom catalyst, ACS Catal. 9 (10) (2019) 8903-8909 [85] D.H. Jiang, G.Q. Fang, Y.Q. Tong, X.Y. Wu, Y.F. Wang, D.S. Hong, W.H. Leng, Z. Liang, P.X. Tu, L. Liu, K.Y. Xu, J. Ni, X.N. Li, Multifunctional Pd@UiO-66 catalysts for continuous catalytic upgrading of ethanol to n-butanol, ACS Catal. 8 (12) (2018) 11973-11978 [86] J. Ni, W.H. Leng, J. Mao, J.G. Wang, J.Y. Lin, D.H. Jiang, X.N. Li, Tuning electron density of metal nickel by support defects in Ni/ZrO2 for selective hydrogenation of fatty acids to alkanes and alcohols, Appl. Catal. B: Environ. 253 (2019) 170-178 [87] X.Y. Wu, G.Q. Fang, Y.Q. Tong, D.H. Jiang, Z. Liang, W.H. Leng, L. Liu, P.X. Tu, H.J. Wang, J. Ni, X.N. Li, Catalytic upgrading of ethanol to n-butanol: Progress in catalyst development, ChemSusChem 11 (1) (2018) 71-85 [88] S. Feng, X. Lin, X. Song, B. Mei, J. Mu, J. Li, Y. Liu, Z. Jiang, Y. Ding, Constructing efficient single Rh sites on activated carbon via surface carbonyl groups for methanol carbonylation, ACS Catal. 11 (2021) 682-690 [89] Z. Ren, Y. Liu, Y. Lyu, X.G. Song, C.Y. Zheng, S.Q. Feng, Z. Jiang, Y.J. Ding, Single-atom Rh based bipyridine framework porous organic polymer: A high active and superb stable catalyst for heterogeneous methanol carbonylation, J. Catal. 369 (2019) 249-256 [90] T. Moteki, N. Tominaga, M. Ogura, CO-assisted direct methane conversion into C1 and C2 oxygenates over ZSM-5 supported transition and platinum group metal catalysts using oxygen as an oxidant, ChemCatChem 12 (11) (2020) 2957-2961 [91] K. Narsimhan, V.K. Michaelis, G. Mathies, W.R. Gunther, R.G. Griffin, Y. Román-Leshkov, Methane to acetic acid over Cu-exchanged zeolites: Mechanistic insights from a site-specific carbonylation reaction, J. Am. Chem. Soc. 137 (5) (2015) 1825-1832 [92] J. Lin, X.D. Wang, Rh single atom catalyst for direct conversion of methane to oxygenates, Sci. China Mater. 61 (5) (2018) 758-760 [93] J. Kang, P. Puthiaraj, W.S. Ahn, E.D. Park, Direct synthesis of oxygenates via partial oxidation of methane in the presence of O2 and H2 over a combination of Fe-ZSM-5 and Pd supported on an acid-functionalized porous polymer, Appl. Catal. A: Gen. 602 (2020) 117711 [94] V.R. Choudhary, A.G. Gaikwad, S.D. Sansrae, Supported Pd metal catalysts for selective oxidation of hydrogen to hydrogen peroxide, Catal. Lett. 83 (2002) 235-239 [95] J.K. Edwards, B.E. Solsona, P. Landon, A.F. Carley, A. Herzing, C.J. Kiely, G.J. Hutchings, Direct synthesis of hydrogen peroxide from H2 and O2 using TiO2-supported Au-Pd catalysts, J. Catal. 236 (1) (2005) 69-79 [96] Y.L. He, J.M. Liang, Y. Imai, K. Ueda, H.J. Li, X.Y. Guo, G.H. Yang, Y. Yoneyama, N. Tsubaki, Highly selective synthesis of methanol from methane over carbon materials supported Pd-Au nanoparticles under mild conditions, Catal. Today 352 (2020) 104-110 [97] M.H. Ab Rahim, R.D. Armstrong, C. Hammond, N. Dimitratos, S.J. Freakley, M.M. Forde, D.J. Morgan, G. Lalev, R.L. Jenkins, J.A. Lopez-Sanchez, S.H. Taylor, G.J. Hutchings, Low temperature selective oxidation of methane to methanol using titania supported gold palladium copper catalysts, Catal. Sci. Technol. 6 (10) (2016) 3410-3418 [98] C. Williams, J.H. Carter, N.F. Dummer, Y.K. Chow, D.J. Morgan, S. Yacob, P. Serna, D.J. Willock, R.J. Meyer, S.H. Taylor, G.J. Hutchings, Selective oxidation of methane to methanol using supported AuPd catalysts prepared by stabilizer-free Sol-immobilization, ACS Catal. 8 (3) (2018) 2567-2576 [99] Z. Liang, T. Li, M. Kim, A. Asthagiri, J.F. Weaver, Low-temperature activation of methane on the IrO2(110) surface, Science 356 (6335) (2017) 299-303 [100] R. Jin, M. Peng, A. Li, Y. Deng, Z. Jia, F. Huang, Y. Ling, F. Yang, H. Fu, J. Xie, X. Han, D. Xiao, Z. Jiang, H. Liu, D. Ma, Low temperature oxidation of ethane to oxygenates by oxygen over iridium-cluster catalysts, J. Am. Chem. Soc. 141 (48) (2019) 18921-18925 |
[1] | Yingmeng Zhang, Luting Liu, Qingwei Deng, Wanlin Wu, Yongliang Li, Xiangzhong Ren, Peixin Zhang, Lingna Sun. Hybrid CuO-Co3O4 nanosphere/RGO sandwiched composites as anode materials for lithium-ion batteries [J]. Chinese Journal of Chemical Engineering, 2022, 47(7): 185-192. |
[2] | Dongze Ma, Ye Tian, Tiefei He, Xiaobiao Zhu. Preparation of novel magnetic nanoparticles as draw solutes in forward osmosis desalination [J]. Chinese Journal of Chemical Engineering, 2022, 46(6): 223-230. |
[3] | Xinyu Yan, Bobo Wang, Hongxia Liang, Jie Yang, Jie Zhao, Fabrice Ndayisenga, Hongxun Zhang, Zhisheng Yu, Zhi Qian. Enhanced straw fermentation process based on microbial electrolysis cell coupled anaerobic digestion [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 239-245. |
[4] | Xin Jiang, Baojiang Sun, Zhiyuan Wang, Wantian Zhou, Jiakai Ji, Litao Chen. Methane hydrate crystal growth on shell substrate [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 50-61. |
[5] | Bo Wu, Xing Yu, Min Huang, Liangshu Zhong, Yuhan Sun. Rh single atoms embedded in CeO2 nanostructure boost CO2 hydrogenation to HCOOH [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 62-69. |
[6] | Chen Gu, Wenqiang Weng, Cong Lu, Peng Tan, Yao Jiang, Qiang Zhang, Xiaoqin Liu, Linbing Sun. Decorating MXene with tiny ZIF-8 nanoparticles: An effective approach to construct composites for water pollutant removal [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 42-48. |
[7] | Tongan Yan, Dahuan Liu, Qingyuan Yang, Chongli Zhong. Screening and design of COF-based mixed-matrix membrane for CH4/N2 separation [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 170-177. |
[8] | Jian Song, Claudia Li, Shao Zhang, Xiuxia Meng, Bo Meng, Jaka Sunarso. Catalyst-modified perovskite hollow fiber membrane for oxidative coupling of methane [J]. Chinese Journal of Chemical Engineering, 2022, 41(1): 412-419. |
[9] | Tao Liu, Ying Xie, Lei Shi, Yu Liu, Zhenyu Chu, Wanqin Jin. 3D Prussian blue/Pt decorated carbon nanofibers based screen-printed microchips for the ultrasensitive hydroquinone biosensing [J]. Chinese Journal of Chemical Engineering, 2021, 37(9): 105-113. |
[10] | Saboura Ashkevarian, Jalil Badraghi, Fatemeh Mamashli, Behdad Delavari, Ali Akbar Saboury. Covalent immobilization and characterization of Rhizopus oryzae lipase on core-shell cobalt ferrite nanoparticles for biodiesel production [J]. Chinese Journal of Chemical Engineering, 2021, 37(9): 128-136. |
[11] | Mohammad Yousefi, Shima Azizi, S. M. Peyghambarzadeh, Zoha Azizi. Ethylene absorption in N-methyl-2-pyrrolidone/silver nano-solvent: Thermodynamics and kinetics study [J]. Chinese Journal of Chemical Engineering, 2021, 36(8): 57-66. |
[12] | Patsakol Prayoonpunratn, Trin Jedsukontorn, Mali Hunsom. Photocatalytic activity of metal nanoparticle-decorated titanium dioxide for simultaneous H2 production and biodiesel wastewater remediation [J]. Chinese Journal of Chemical Engineering, 2021, 36(8): 86-100. |
[13] | Ruolin Guan, Hairong Yuan, Liang Zhang, Xiaoyu Zuo, Xiujin Li. Combined pretreatment using CaO and liquid fraction of digestate of rice straw: Anaerobic digestion performance and electron transfer [J]. Chinese Journal of Chemical Engineering, 2021, 36(8): 223-232. |
[14] | Zichao Hu, Chao Li, Dengfeng Zhang. Interactions of dynamic supercritical CO2 fluid with different rank moisture-equilibrated coals: Implications for CO2 sequestration in coal seams [J]. Chinese Journal of Chemical Engineering, 2021, 35(7): 288-301. |
[15] | Najeebullah Lashari, Tarek Ganat. Synthesized graphene oxide and fumed aerosil 380 dispersion stability and characterization with partially hydrolyzed polyacrylamide [J]. Chinese Journal of Chemical Engineering, 2021, 34(6): 307-322. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||