Chinese Journal of Chemical Engineering ›› 2021, Vol. 38 ›› Issue (10): 18-29.DOI: 10.1016/j.cjche.2021.04.034
• Reviews • Previous Articles Next Articles
Geqian Fang1,2, Jian Lin1, Xiaodong Wang1
Received:
2021-02-04
Revised:
2021-04-13
Online:
2021-12-02
Published:
2021-10-28
Contact:
Jian Lin, Xiaodong Wang
Supported by:
Geqian Fang1,2, Jian Lin1, Xiaodong Wang1
通讯作者:
Jian Lin, Xiaodong Wang
基金资助:
Geqian Fang, Jian Lin, Xiaodong Wang. Low-temperature conversion of methane to oxygenates by supported metal catalysts: From nanoparticles to single atoms[J]. Chinese Journal of Chemical Engineering, 2021, 38(10): 18-29.
Geqian Fang, Jian Lin, Xiaodong Wang. Low-temperature conversion of methane to oxygenates by supported metal catalysts: From nanoparticles to single atoms[J]. 中国化学工程学报, 2021, 38(10): 18-29.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2021.04.034
[1] P. Schwach, X.L. Pan, X.H. Bao, Direct conversion of methane to value-added chemicals over heterogeneous catalysts: Challenges and prospects, Chem. Rev. 117 (13) (2017) 8497-8520 [2] W. Taifan, J. Baltrusaitis, CH4 conversion to value added products: Potential, limitations and extensions of a single step heterogeneous catalysis, Appl. Catal. B: Environ. 198 (2016) 525-547 [3] T. Zhang, A.Q. Wang, H. Liu, X.Y. Liu, Direct conversion of methane on single-atom catalysts, Sci. Sin.-Chim. 51 (2) (2021) 175-187 [4] Z.J. Yang, F. Wang, Differentiation of alkane isomers through binding energy spectra and total momentum cross sections, New J. Chem. 38 (3) (2014) 1031 [5] J. Berkowitz, J.P. Greene, H. Cho, B. Ruščić, Photoionization mass spectrometric studies of SiHnull (n=1-4), J. Chem. Phys. 86 (3) (1987) 1235-1248 [6] R. Horn, R. Schlogl, Methane activation by heterogeneous catalysis, Catal. Lett. 145 (1) (2015) 23-39 [7] M. Ravi, M. Ranocchiari, J.A. Van Bokhoven, The direct catalytic oxidation of methane to methanol-A critical assessment, Angew. Chem. Int. Ed. 56 (52) (2017) 16464-16483 [8] P. Tomkins, M. Ranocchiari, J.A. van Bokhoven, Direct conversion of methane to methanol under mild conditions over Cu-zeolites and beyond, Acc. Chem. Res. 50 (2) (2017) 418-425 [9] J. Xie, R. Jin, A. Li, Y. Bi, Q. Ruan, Y. Deng, Y. Zhang, S. Yao, G. Sankar, D. Ma, J. Tang, Highly selective oxidation of methane to methanol at ambient conditions by titanium dioxide-supported iron species, Nature Catal. 1 (11) (2018) 889-896 [10] H. Schulz, Short history and present trends of Fischer-Tropsch synthesis, Appl. Catal. A: Gen. 186 (1-2) (1999) 3-12 [11] V.L. Sushkevich, D. Palagin, M. Ranocchiari, J.A. van Bokhoven, Selective anaerobic oxidation of methane enables direct synthesis of methanol, Science 356 (6337) (2017) 523-527 [12] B.W. Wang, S. Albarracín-Suazo, Y. Pagán-Torres, E. Nikolla, Advances in methane conversion processes, Catal. Today 285 (2017) 147-158 [13] O.A. Mironov, S.M. Bischof, M.M. Konnick, B.G. Hashiguchi, V.R. Ziatdinov, W. A. Goddard 3rd, M. Ahlquist, R.A. Periana, Using reduced catalysts for oxidation reactions: Mechanistic studies of the “Periana-Catalytica” system for CH4 oxidation, J. Am. Chem. Soc. 135 (39) (2013) 14644-14658 [14] R.A. Periana, O. Mironov, D. Taube, G. Bhalla, C.J. Jones, Catalytic, oxidative condensation of CH4 to CH3COOH in one step via CH activation, Science 301 (5634) (2003) 814-818 [15] V.L. Sushkevich, J.A. van Bokhoven, Methane-to-methanol: Activity descriptors in copper-exchanged zeolites for the rational design of materials, ACS Catal. 9 (7) (2019) 6293-6304 [16] S.E. Bozbag, P. Sot, M. Nachtegaal, M. Ranocchiari, J.A. van Bokhoven, C. Mesters, Direct stepwise oxidation of methane to methanol over Cu-SiO2, ACS Catal. 8 (7) (2018) 5721-5731 [17] C.Y. Ruan, Z.Q. Huang, J. Lin, L. Li, X.Y. Liu, M. Tian, C.D. Huang, C.R. Chang, J. Li, X.D. Wang, Synergy of the catalytic activation on Ni and the CeO2-TiO2/Ce2Ti2O7 stoichiometric redox cycle for dramatically enhanced solar fuel production, Energy Environ. Sci. 12 (2) (2019) 767-779 [18] L. Zhang, W. Xu, J. Wu, Y. Hu, C. Huang, Y. Zhu, M. Tian, Y. Kang, X. Pan, Y. Su, J. Wang, X. Wang, Identifying the role of A-site cations in modulating oxygen capacity of iron-based perovskite for enhanced chemical looping methane-to-syngas conversion, ACS Catal. 10 (16) (2020) 9420-9430 [19] M. Tian, X.D. Wang, T. Zhang, Hexaaluminates: A review of the structure, synthesis and catalytic performance, Catal. Sci. Technol. 6 (7) (2016) 1984-2004 [20] X.G. Meng, X.J. Cui, N.P. Rajan, L. Yu, D.H. Deng, X.H. Bao, Direct methane conversion under mild condition by thermo-, electro-, or photocatalysis, Chem 5 (9) (2019) 2296-2325 [21] Y.T. Liu, D.H. Deng, X.H. Bao, Catalysis for selected C1 chemistry, Chem 6 (10) (2020) 2497-2514 [22] Q.H. Yang, Q. Xu, H.L. Jiang, Metal-organic frameworks meet metal nanoparticles: Synergistic effect for enhanced catalysis, Chem. Soc. Rev. 46 (15) (2017) 4774-4808 [23] J.L. Shi, On the synergetic catalytic effect in heterogeneous nanocomposite catalysts, Chem. Rev. 113 (3) (2013) 2139-2181 [24] Z. Li, S. Ji, Y. Liu, X. Cao, S. Tian, Y. Chen, Z. Niu, Y. Li, Well-defined materials for heterogeneous catalysis: From nanoparticles to isolated single-atom sites, Chem. Rev. 120 (2) (2020) 623-682 [25] K.J. Zhen, M.M. Khan, C.H. Mak, K.B. Lewis, G.A. Somorjai, Partial oxidation of methane with nitrous oxide over V2O5-SiO2 catalyst, J. Catal. 94 (1985) 501-507 [26] S.H. Taylor, J.S.J. Hargreaves, G.J. Hutchings, R.W. Joyner, C.W. Lembacher, The partial oxidation of methane to methanol: An approach to catalyst design, Catal. Today 42 (3) (1998) 217-224 [27] G.O. Alptekin, A.M. Herring, D.L. Williamson, T.R. Ohno, R.L. McCormick, Methane partial oxidation by unsupported and silica supported iron phosphate catalysts, J. Catal. 181 (1) (1999) 104-112 [28] B.T. Qiao, A.Q. Wang, X.F. Yang, L.F. Allard, Z. Jiang, Y.T. Cui, J.Y. Liu, J. Li, T. Zhang, Single-atom catalysis of CO oxidation using Pt1/FeOnull, Nat. Chem. 3 (8) (2011) 634-641 [29] J. Lin, A.Q. Wang, B.T. Qiao, X.Y. Liu, X.F. Yang, X.D. Wang, J.X. Liang, J. Li, J.Y. Liu, T. Zhang, Remarkable performance of Ir1/FeO(x) single-atom catalyst in water gas shift reaction, J. Am. Chem. Soc. 135 (41) (2013) 15314-15317 [30] J.X. Liang, J. Lin, J.Y. Liu, X.D. Wang, T. Zhang, J. Li, Dual metal active sites in an Ir1 /FeOnull single-atom catalyst: A redox mechanism for the water-gas shift reaction, Angew. Chem. Int. Ed. Engl. 59 (31) (2020) 12868-12875 [31] Y. Chen, J. Lin, L. Li, B. Qiao, J. Liu, Y. Su, X. Wang, Identifying size effects of Pt as single atoms and nanoparticles supported on FeOnull for the water-gas shift reaction, ACS Catal. 8 (2) (2018) 859-868 [32] Y. Lou, Y.P. Zheng, X. Li, N. Ta, J. Xu, Y.F. Nie, K. Cho, J.Y. Liu, Pocketlike active site of Rh1/MoS2 single-atom catalyst for selective crotonaldehyde hydrogenation, J Am. Chem. Soc. 141 (49) (2019) 19289-19295 [33] Y. Lou, Y. Cai, W. Hu, L. Wang, Q. Dai, W. Zhan, Y. Guo, P. Hu, X.-M. Cao, J. Liu, Y. Guo, Identification of active area as active center for CO oxidation over single Au atom catalyst, ACS Catal. 10 (11) (2020) 6094-6101 [34] C. Hammond, M.M. Forde, M.H. Ab Rahim, A. Thetford, Q. He, R.L. Jenkins, N. Dimitratos, J.A. Lopez-Sanchez, N.F. Dummer, D.M. Murphy, A.F. Carley, S.H. Taylor, D.J. Willock, E.E. Stangland, J. Kang, H. Hagen, C.J. Kiely, G.J. Hutchings, Direct catalytic conversion of methane to methanol in an aqueous medium by using copper-promoted Fe-ZSM-5, Angew. Chem. 124 (21) (2012) 5219-5223 [35] D.Y. Osadchii, A.I. Olivos-Suarez, Á. Szécsényi, G.N. Li, M.A. Nasalevich, I.A. Dugulan, P.S. Crespo, E.J.M. Hensen, S.L. Veber, M.V. Fedin, G. Sankar, E.A. Pidko, J. Gascon, Isolated Fe sites in metal organic frameworks catalyze the direct conversion of methane to methanol, ACS Catal. 8 (6) (2018) 5542-5548 [36] W.S. Zhao, Y.N. Shi, Y.H. Jiang, X.F. Zhang, C. Long, P.F. An, Y.F. Zhu, S.X. Shao, Z. Yan, G.D. Li, Z.Y. Tang, Fe-O clusters anchored on nodes of metal-organic frameworks for direct methane oxidation, Angew. Chem. Int. Ed. Engl. 60 (11) (2021) 5811-5815 [37] R.D. Armstrong, V. Peneau, N. Ritterskamp, C.J. Kiely, S.H. Taylor, G.J. Hutchings, The role of copper speciation in the low temperature oxidative upgrading of short chain alkanes over Cu/ZSM-5 catalysts, Chemphyschem 19 (4) (2018) 469-478 [38] C.C. Liu, C.Y. Mou, S.S.F. Yu, S.I. Chan, Heterogeneous formulation of the tricopper complex for efficient catalytic conversion of methane into methanol at ambient temperature and pressure, Energy Environ. Sci. 9 (4) (2016) 1361-1374 [39] M.H. Ab Rahim, M.M. Forde, R.L. Jenkins, C. Hammond, Q. He, N. Dimitratos, J.A. Lopez-Sanchez, A.F. Carley, S.H. Taylor, D.J. Willock, D.M. Murphy, C.J. Kiely, G.J. Hutchings, Oxidation of methane to methanol with hydrogen peroxide using supported gold-palladium alloy nanoparticles, Angew. Chem. Int. Ed. Engl. 52 (4) (2013) 1280-1284 [40] Z. Jin, L. Wang, E. Zuidema, K. Mondal, M. Zhang, J. Zhang, C.T. Wang, X.J. Meng, H.Q. Yang, C. Mesters, F.S. Xiao, Hydrophobic zeolite modification for in situ peroxide formation in methane oxidation to methanol, Science 367 (6474) (2020) 193-197 [41] N. Agarwal, S.J. Freakley, R.U. McVicker, S.M. Althahban, N. Dimitratos, Q. He, D.J. Morgan, R.L. Jenkins, D.J. Willock, S.H. Taylor, C.J. Kiely, G.J. Hutchings, Aqueous Au-Pd colloids catalyze selective CH4 oxidation to CH3OH with O2 under mild conditions, Science 358 (6360) (2017) 223-227 [42] R. McVicker, N. Agarwal, S.J. Freakley, Q. He, S. Althahban, S.H. Taylor, C.J. Kiely, G.J. Hutchings, Low temperature selective oxidation of methane using gold-palladium colloids, Catal. Today 342 (2020) 32-38 [43] R. Serra-Maia, F.M. Michel, Y. Kang, E.A. Stach, Decomposition of hydrogen peroxide catalyzed by AuPd nanocatalysts during methane oxidation to methanol, ACS Catal. 10 (9) (2020) 5115-5123 [44] S.X. Bai, Q. Yao, Y. Xu, K.L. Cao, X.Q. Huang, Strong synergy in a lichen-like RuCu nanosheet boosts the direct methane oxidation to methanol, Nano Energy 71 (2020) 104566 [45] C. Samanta, V.R. Choudhary, Direct oxidation of H2 to H2O2 over Pd/CeO2 catalyst under ambient conditions: Influence of halide ions, Chem. Eng. J. 136 (2-3) (2008) 126-132 [46] S. Bai, Y. Xu, P. Wang, Q. Shao, X. Huan, Activating and converting CH4 to CH3OH via the CuPdO2/CuO nanointerface, ACS Catal. 9 (8) (2019) 6938-6944 [47] L. Yang, J.X. Huang, R. Ma, R. You, H. Zeng, Z.B. Rui, Metal-organic framework-derived IrO2/CuO catalyst for selective oxidation of methane to methanol, ACS Energy Lett. 4 (12) (2019) 2945-2951 [48] L. Yang, J.X. Huang, S. Dai, X. Tang, Z. Hu, M. Li, H. Zeng, R. Luque, P.G. Duan, Z.B. Rui, Uniphase ruthenium-iridium alloy-based electronic regulation for electronic structure-function study in methane oxidation to methanol, J. Mater. Chem. A 8 (45) (2020) 24024-24030 [49] X.J. Cui, H.B. Li, Y. Wang, Y.L. Hu, L. Hua, H.Y. Li, X.W. Han, Q.F. Liu, F. Yang, L.M. He, X.Q. Chen, Q.Y. Li, J.P. Xiao, D.H. Deng, X.H. Bao, Room-temperature methane conversion by graphene-confined single iron atoms, Chem 4 (8) (2018) 1902-1910 [50] K.X. Zhu, S.X. Liang, X.J. Cui, R. Huang, N.B. Wan, L. Hua, H.Y. Li, H.Y. Chen, Z.C. Zhao, G.J. Hou, M.R. Li, Q.K. Jiang, L. Yu, D.H. Deng, Highly efficient conversion of methane to formic acid under mild conditions at ZSM-5-confined Fe-sites, Nano Energy 82 (2021) 105718 [51] T. Yu, Z. Li, W. Jones, Y.S. Liu, Q. He, W.Y. Song, P.F. Du, B. Yang, H.Y. An, D.M. Farmer, C.W. Qiu, A.Q. Wang, B.M. Weckhuysen, A.M. Beale, W.H. Luo, Identifying key mononuclear Fe species for low-temperature methane oxidation, Chem. Sci. 12 (9) (2021) 3152-3160 [52] T. Zhang, D. Zhang, X. Han, T. Dong, X. Guo, C. Song, R. Si, W. Liu, Y. Liu, Z. Zhao, Preassembly strategy to fabricate porous hollow carbonitride spheres inlaid with single Cu-N3 sites for selective oxidation of benzene to phenol, J. Am. Chem. Soc. 140 (49) (2018) 16936-16940 [53] X. Tang, L. Wang, B. Yang, C. Fei, T.Y. Yao, W. Liu, Y. Lou, Q.G. Dai, Y.F. Cai, X.M. Cao, W.C. Zhan, Y.L. Guo, X.Q. Gong, Y. Guo, Direct oxidation of methane to oxygenates on supported single Cu atom catalyst, Appl. Catal. B: Environ. 285 (2021) 119827 [54] W.X. Huang, S.R. Zhang, Y. Tang, Y.T. Li, L. Nguyen, Y.Y. Li, J.J. Shan, D.Q. Xiao, R. Gagne, A.I. Frenkel, F.F. Tao, Low-temperature transformation of methane to methanol on Pd1O4 single sites anchored on the internal surface of microporous silicate, Angew. Chem. Int. Ed. 55 (43) (2016) 13441-13445 [55] Y. Kwon, T.Y. Kim, G. Kwon, J. Yi, H. Lee, Selective activation of methane on single-atom catalyst of rhodium dispersed on zirconia for direct conversion, J. Am. Chem. Soc. 139 (48) (2017) 17694-17699 [56] S.X. Bai, F.F. Liu, B.L. Huang, F. Li, H.P. Lin, T. Wu, M.Z. Sun, J.B. Wu, Q. Shao, Y. Xu, X.Q. Huang, High-efficiency direct methane conversion to oxygenates on a cerium dioxide nanowires supported rhodium single-atom catalyst, Nat. Commun. 11 (1) (2020) 1-9 [57] J.J. Shan, M.W. Li, L.F. Allard, S. Lee, M. Flytzani-Stephanopoulos, Mild oxidation of methane to methanol or acetic acid on supported isolated rhodium catalysts, Nature 551 (7682) (2017) 605-608 [58] Y. Tang, Y.T. Li, V. Fung, D.E. Jiang, W.X. Huang, S.R. Zhang, Y. Iwasawa, T. Sakata, L. Nguyen, X.Y. Zhang, A.I. Frenkel, F.F. Tao, Single rhodium atoms anchored in micropores for efficient transformation of methane under mild conditions, Nat. Commun. 9 (1) (2018) 1231 [59] H. Zhou, T.Y. Liu, X.Y. Zhao, Y.F. Zhao, H. Lv, S. Fang, X.Q. Wang, F.Y. Zhou, Q. Xu, J. Xu, C. Xiong, Z.G. Xue, K. Wang, W.C. Cheong, W. Xi, L. Gu, T. Yao, S.Q. Wei, X. Hong, J. Luo, Y.F. Li, Y.E. Wu, Frontispiece: A supported nickel catalyst stabilized by a surface digging effect for efficient methane oxidation, Angew. Chem. Int. Ed [60] Q.K. Shen, C.Y. Cao, R.K. Huang, L. Zhu, X. Zhou, Q.H. Zhang, L. Gu, W.G. Song, Single chromium atoms supported on titanium dioxide nanoparticles for synergic catalytic methane conversion under mild conditions, Angew. Chem. Int. Ed. 59 (3) (2020) 1216-1219 [61] K.A. Dubkov, N.S. Ovanesyan, A.A. Shteinman, E.V. Starokon, G.I. Panov, Evolution of iron states and formation of α-sites upon activation of FeZSM-5 zeolites, J. Catal. 207 (2) (2002) 341-352 [62] M.O. Ross, A.C. Rosenzweig, A tale of two methane monooxygenases, J. Biol. Inorg. Chem. 22 (2-3) (2017) 307-319 [63] J.C. da Silva, R.C. Pennifold, J.N. Harvey, W.R. Rocha, A radical rebound mechanism for the methane oxidation reaction promoted by the dicopper center of a pMMO enzyme: A computational perspective, Dalton Trans. 45 (6) (2016) 2492-2504 [64] C. Hammond, R.L. Jenkins, N. Dimitratos, J.A. Lopez-Sanchez, M.H. ab Rahim, M.M. Forde, A. Thetford, D.M. Murphy, H. Hagen, E.E. Stangland, J.M. Moulijn, S.H. Taylor, D.J. Willock, G.J. Hutchings, Catalytic and mechanistic insights of the low-temperature selective oxidation of methane over Cu-promoted Fe-ZSM-5, Chemistry 18 (49) (2012) 15735-15745 [65] K. Yoshizawa, Two-step concerted mechanism for methane hydroxylation on the diiron active site of soluble methane monooxygenase, J. Inorg. Biochem. 78 (1) (2000) 23-34 [66] C. Hammond, N. Dimitratos, R.L. Jenkins, J.A. Lopez-Sanchez, S.A. Kondrat, M. Hasbi ab Rahim, M.M. Forde, A. Thetford, S.H. Taylor, H. Hagen, E.E. Stangland, J.H. Kang, J.M. Moulijn, D.J. Willock, G.J. Hutchings, Elucidation and evolution of the active component within Cu/Fe/ZSM-5 for catalytic methane oxidation: From synthesis to catalysis, ACS Catal. 3 (4) (2013) 689-699 [67] C. Hammond, I. Hermans, N. Dimitratos, Biomimetic oxidation with Fe-ZSM-5 and H2O2? identification of an active, extra-framework binuclear core and an FeIIIOOH intermediate with resonance-enhanced Raman spectroscopy, ChemCatChem 7 (3) (2015) 434-440 [68] C. Hammond, N. Dimitratos, J.A. Lopez-Sanchez, R.L. Jenkins, G. Whiting, S.A. Kondrat, M.H. ab Rahim, M.M. Forde, A. Thetford, H. Hagen, E.E. Stangland, J.M. Moulijn, S.H. Taylor, D.J. Willock, G.J. Hutchings, Aqueous-phase methane oxidation over Fe-MFI zeolites; promotion through isomorphous framework substitution, ACS Catal. 3 (8) (2013) 1835-1844 [69] S. Al-Shihri, C.J. Richard, D. Chadwick, Selective oxidation of methane to methanol over ZSM-5 catalysts in aqueous hydrogen peroxide: Role of formaldehyde, ChemCatChem 9 (7) (2017) 1276-1283 [70] C. Kalamaras, D. Palomas, R. Bos, A. Horton, M. Crimmin, K. Hellgardt, Selective oxidation of methane to methanol over Cu- and Fe-exchanged zeolites: The effect of Si/Al molar ratio, Catal. Lett. 146 (2) (2016) 483-492 [71] Á. Szécsényi, G.N. Li, J. Gascon, E.A. Pidko, Mechanistic complexity of methane oxidation with H2O2 by single-site Fe/ZSM-5 catalyst, ACS Catal. 8 (9) (2018) 7961-7972 [72] Á. Szécsényi, G.N. Li, J. Gascon, E.A. Pidko, Unraveling reaction networks behind the catalytic oxidation of methane with H2O2 over a mixed-metal MIL-53(Al, Fe) MOF catalyst, Chem. Sci. 9 (33) (2018) 6765-6773 [73] V.L. Sushkevich, D. Palagin, J.A. Van Bokhoven, The effect of the active-site structure on the activity of copper mordenite in the aerobic and anaerobic conversion of methane into methanol, Angew. Chem. Int. Ed. 57 (29) (2018) 8906-8910 [74] M.A. Newton, A.J. Knorpp, A.B. Pinar, V.L. Sushkevich, D. Palagin, J.A. van Bokhoven, On the mechanism underlying the direct conversion of methane to methanol by copper hosted in zeolites; braiding Cu K-edge XANES and reactivity studies, J. Am. Chem. Soc. 140 (32) (2018) 10090-10093 [75] T. Ikuno, J. Zheng, A. Vjunov, M. Sanchez-Sanchez, M.A. Ortuño, D.R. Pahls, J.L. Fulton, D.M. Camaioni, Z.Y. Li, D. Ray, B.L. Mehdi, N.D. Browning, O.K. Farha, J.T. Hupp, C.J. Cramer, L. Gagliardi, J.A. Lercher, Methane oxidation to methanol catalyzed by Cu-oxo clusters stabilized in NU-1000 metal-organic framework, J. Am. Chem. Soc. 139 (30) (2017) 10294-10301 [76] J. Zheng, J.Y. Ye, M.A. Ortuño, J.L. Fulton, O.Y. Gutiérrez, D.M. Camaioni, R.K. Motkuri, Z.Y. Li, T.E. Webber, B.L. Mehdi, N.D. Browning, R.L. Penn, O.K. Farha, J.T. Hupp, D.G. Truhlar, C.J. Cramer, J.A. Lercher, Selective methane oxidation to methanol on Cu-oxo dimers stabilized by zirconia nodes of an NU-1000 metal-organic framework, J. Am. Chem. Soc. 141 (23) (2019) 9292-9304 [77] J. Baek, B. Rungtaweevoranit, X.K. Pei, M. Park, S.C. Fakra, Y.S. Liu, R. Matheu, S.A. Alshmimri, S. Alshehri, C.A. Trickett, G.A. Somorjai, O.M. Yaghi, Bioinspired metal-organic framework catalysts for selective methane oxidation to methanol, J. Am. Chem. Soc. 140 (51) (2018) 18208-18216 [78] Y. Zhou, F. Wei, J. Lin, L. Li, X. Li, H. Qi, X. Pan, X. Liu, C. Huang, S. Lin, X. Wang, Sulfate-modified NiAl mixed oxides as effective C-H bond-breaking agents for the sole production of ethylene from ethane, ACS Catal. 10 (2020) 7619-7629 [79] P. Zhou, F. Lv, N. Li, Y.L. Zhang, Z.J. Mu, Y.H. Tang, J.P. Lai, Y.G. Chao, M.C. Luo, F. Lin, J.H. Zhou, D. Su, S.J. Guo, Strengthening reactive metal-support interaction to stabilize high-density Pt single atoms on electron-deficient g-C3N4 for boosting photocatalytic H2 production, Nano Energy 56 (2019) 127-137 [80] L. Zhao, Y. Zhang, L.B. Huang, X.Z. Liu, Q.H. Zhang, C. He, Z.Y. Wu, L.J. Zhang, J.P. Wu, W.L. Yang, L. Gu, J.S. Hu, L.J. Wan, Cascade anchoring strategy for general mass production of high-loading single-atomic metal-nitrogen catalysts, Nat. Commun. 10 (1) (2019) 1278 [81] X. He, Q. He, Y. Deng, M. Peng, H. Chen, Y. Zhang, S. Yao, M. Zhang, D. Xiao, D. Ma, B. Ge, H. Ji, A versatile route to fabricate single atom catalysts with high chemoselectivity and regioselectivity in hydrogenation, Nat. Commun. 10 (1) (2019) 3663 [82] B. Wu, R.O. Yang, L. Shi, T.J. Lin, X. Yu, M. Huang, K. Gong, F.F. Sun, Z. Jiang, S.G. Li, L.S. Zhong, Y.H. Sun, Cu single-atoms embedded in porous carbon nitride for selective oxidation of methane to oxygenates, Chem. Commun. 56 (93) (2020) 14677-14680 [83] J.F. Weaver, C. Hakanoglu, A. Antony, A. Asthagiri, Alkane activation on crystalline metal oxide surfaces, Chem. Soc. Rev. 43 (22) (2014) 7536-7547 [84] K. Harrath, X. Yu, H. Xiao, J. Li, The Key role of support surface hydrogenation in the CH4 to CH3OH selective oxidation by a ZrO2-supported single-atom catalyst, ACS Catal. 9 (10) (2019) 8903-8909 [85] D.H. Jiang, G.Q. Fang, Y.Q. Tong, X.Y. Wu, Y.F. Wang, D.S. Hong, W.H. Leng, Z. Liang, P.X. Tu, L. Liu, K.Y. Xu, J. Ni, X.N. Li, Multifunctional Pd@UiO-66 catalysts for continuous catalytic upgrading of ethanol to n-butanol, ACS Catal. 8 (12) (2018) 11973-11978 [86] J. Ni, W.H. Leng, J. Mao, J.G. Wang, J.Y. Lin, D.H. Jiang, X.N. Li, Tuning electron density of metal nickel by support defects in Ni/ZrO2 for selective hydrogenation of fatty acids to alkanes and alcohols, Appl. Catal. B: Environ. 253 (2019) 170-178 [87] X.Y. Wu, G.Q. Fang, Y.Q. Tong, D.H. Jiang, Z. Liang, W.H. Leng, L. Liu, P.X. Tu, H.J. Wang, J. Ni, X.N. Li, Catalytic upgrading of ethanol to n-butanol: Progress in catalyst development, ChemSusChem 11 (1) (2018) 71-85 [88] S. Feng, X. Lin, X. Song, B. Mei, J. Mu, J. Li, Y. Liu, Z. Jiang, Y. Ding, Constructing efficient single Rh sites on activated carbon via surface carbonyl groups for methanol carbonylation, ACS Catal. 11 (2021) 682-690 [89] Z. Ren, Y. Liu, Y. Lyu, X.G. Song, C.Y. Zheng, S.Q. Feng, Z. Jiang, Y.J. Ding, Single-atom Rh based bipyridine framework porous organic polymer: A high active and superb stable catalyst for heterogeneous methanol carbonylation, J. Catal. 369 (2019) 249-256 [90] T. Moteki, N. Tominaga, M. Ogura, CO-assisted direct methane conversion into C1 and C2 oxygenates over ZSM-5 supported transition and platinum group metal catalysts using oxygen as an oxidant, ChemCatChem 12 (11) (2020) 2957-2961 [91] K. Narsimhan, V.K. Michaelis, G. Mathies, W.R. Gunther, R.G. Griffin, Y. Román-Leshkov, Methane to acetic acid over Cu-exchanged zeolites: Mechanistic insights from a site-specific carbonylation reaction, J. Am. Chem. Soc. 137 (5) (2015) 1825-1832 [92] J. Lin, X.D. Wang, Rh single atom catalyst for direct conversion of methane to oxygenates, Sci. China Mater. 61 (5) (2018) 758-760 [93] J. Kang, P. Puthiaraj, W.S. Ahn, E.D. Park, Direct synthesis of oxygenates via partial oxidation of methane in the presence of O2 and H2 over a combination of Fe-ZSM-5 and Pd supported on an acid-functionalized porous polymer, Appl. Catal. A: Gen. 602 (2020) 117711 [94] V.R. Choudhary, A.G. Gaikwad, S.D. Sansrae, Supported Pd metal catalysts for selective oxidation of hydrogen to hydrogen peroxide, Catal. Lett. 83 (2002) 235-239 [95] J.K. Edwards, B.E. Solsona, P. Landon, A.F. Carley, A. Herzing, C.J. Kiely, G.J. Hutchings, Direct synthesis of hydrogen peroxide from H2 and O2 using TiO2-supported Au-Pd catalysts, J. Catal. 236 (1) (2005) 69-79 [96] Y.L. He, J.M. Liang, Y. Imai, K. Ueda, H.J. Li, X.Y. Guo, G.H. Yang, Y. Yoneyama, N. Tsubaki, Highly selective synthesis of methanol from methane over carbon materials supported Pd-Au nanoparticles under mild conditions, Catal. Today 352 (2020) 104-110 [97] M.H. Ab Rahim, R.D. Armstrong, C. Hammond, N. Dimitratos, S.J. Freakley, M.M. Forde, D.J. Morgan, G. Lalev, R.L. Jenkins, J.A. Lopez-Sanchez, S.H. Taylor, G.J. Hutchings, Low temperature selective oxidation of methane to methanol using titania supported gold palladium copper catalysts, Catal. Sci. Technol. 6 (10) (2016) 3410-3418 [98] C. Williams, J.H. Carter, N.F. Dummer, Y.K. Chow, D.J. Morgan, S. Yacob, P. Serna, D.J. Willock, R.J. Meyer, S.H. Taylor, G.J. Hutchings, Selective oxidation of methane to methanol using supported AuPd catalysts prepared by stabilizer-free Sol-immobilization, ACS Catal. 8 (3) (2018) 2567-2576 [99] Z. Liang, T. Li, M. Kim, A. Asthagiri, J.F. Weaver, Low-temperature activation of methane on the IrO2(110) surface, Science 356 (6335) (2017) 299-303 [100] R. Jin, M. Peng, A. Li, Y. Deng, Z. Jia, F. Huang, Y. Ling, F. Yang, H. Fu, J. Xie, X. Han, D. Xiao, Z. Jiang, H. Liu, D. Ma, Low temperature oxidation of ethane to oxygenates by oxygen over iridium-cluster catalysts, J. Am. Chem. Soc. 141 (48) (2019) 18921-18925 |
[1] | Wenting Fan, Fang Zhao, Ming Chen, Jian Li, Xuhong Guo. An efficient microreactor with continuous serially connected micromixers for the synthesis of superparamagnetic magnetite nanoparticles [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 85-91. |
[2] | Masoumeh Sheikh Hosseini Lori, Mohammad Delnavaz, Hoda Khoshvaght. Synthesizing and characterizing the magnetic EDTA/chitosan/CeZnO nanocomposite for simultaneous treating of chromium and phenol in an aqueous solution [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 76-88. |
[3] | Jingran Liu, Yue Wu, Jie Tang, Tao Wang, Feng Ni, Qiumin Wu, Xijiao Yang, Ayyaz Ahmad, Naveed Ramzan, Yisheng Xu. Polymeric assembled nanoparticles through kinetic stabilization by confined impingement jets dilution mixer for fluorescence switching imaging [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 89-96. |
[4] | Xiaoping Li, Jiaxin Pan, Jinwen Shi, Yanlin Chai, Songwei Hu, Qiaorong Han, Yanming Zhang, Xianwen Li, Dengwei Jing. Nanoparticle-induced drag reduction for polyacrylamide in turbulent flow with high Reynolds numbers [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 290-298. |
[5] | Lianlian Zhao, Fufu Di, Xiaonan Wang, Sumbal Farid, Suzhen Ren. Constructing a hollow core-shell structure of RuO2 wrapped by hierarchical porous carbon shell with Ru NPs loading for supercapacitor [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 93-100. |
[6] | Yu Wang, Qunfeng Zhang, Xinlei Liu, Junqi Weng, Guanghua Ye, Xinggui Zhou. Probing deactivation by coking in catalyst pellets for dry reforming of methane using a pore network model [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 293-303. |
[7] | Xueqing Chen, Weiqun Gao, Yan Sun, Xiaoyan Dong. Multiple effects of polydopamine nanoparticles on Cu2+-mediated Alzheimer's β-amyloid aggregation [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 144-152. |
[8] | Lijian Shi, Yaping Zhang, Yujia Tong, Wenlong Ding, Weixing Li. Plant-inspired biomimetic hybrid PVDF membrane co-deposited by tea polyphenols and 3-amino-propyl-triethoxysilane for high-efficiency oil-in-water emulsion separation [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 170-180. |
[9] | Yimin Zhang, Ruiming Zeng, Yun Zu, Linhua Zhu, Yi Mei, Yongming Luo, Dedong He. Low-temperature dry reforming of methane tuned by chemical speciations of active sites on the SiO2 and γ-Al2O3 supported Ni and Ni-Ce catalysts [J]. Chinese Journal of Chemical Engineering, 2022, 48(8): 76-90. |
[10] | Baolong Niu, Min Li, Jianhong Jia, Lixuan Ren, Xin Gang, Bin Nie, Yanying Fan, Xiaojie Lian, Wenfeng Li. Preparation and functional study of pH-sensitive amorphous calcium phosphate nanocarriers [J]. Chinese Journal of Chemical Engineering, 2022, 48(8): 244-252. |
[11] | Yingmeng Zhang, Luting Liu, Qingwei Deng, Wanlin Wu, Yongliang Li, Xiangzhong Ren, Peixin Zhang, Lingna Sun. Hybrid CuO-Co3O4 nanosphere/RGO sandwiched composites as anode materials for lithium-ion batteries [J]. Chinese Journal of Chemical Engineering, 2022, 47(7): 185-192. |
[12] | Dongze Ma, Ye Tian, Tiefei He, Xiaobiao Zhu. Preparation of novel magnetic nanoparticles as draw solutes in forward osmosis desalination [J]. Chinese Journal of Chemical Engineering, 2022, 46(6): 223-230. |
[13] | Xinyu Yan, Bobo Wang, Hongxia Liang, Jie Yang, Jie Zhao, Fabrice Ndayisenga, Hongxun Zhang, Zhisheng Yu, Zhi Qian. Enhanced straw fermentation process based on microbial electrolysis cell coupled anaerobic digestion [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 239-245. |
[14] | Xin Jiang, Baojiang Sun, Zhiyuan Wang, Wantian Zhou, Jiakai Ji, Litao Chen. Methane hydrate crystal growth on shell substrate [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 50-61. |
[15] | Bo Wu, Xing Yu, Min Huang, Liangshu Zhong, Yuhan Sun. Rh single atoms embedded in CeO2 nanostructure boost CO2 hydrogenation to HCOOH [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 62-69. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||