Chinese Journal of Chemical Engineering ›› 2021, Vol. 38 ›› Issue (10): 1-17.DOI: 10.1016/j.cjche.2021.03.033
• Reviews • Next Articles
Kexin Bi, Shuyuan Zhang, Chen Zhang, Haoran Li, Xinye Huang, Haoyu Liu, Tong Qiu
Received:
2020-10-20
Revised:
2021-03-12
Online:
2021-12-02
Published:
2021-10-28
Contact:
Tong Qiu
Supported by:
Kexin Bi, Shuyuan Zhang, Chen Zhang, Haoran Li, Xinye Huang, Haoyu Liu, Tong Qiu
通讯作者:
Tong Qiu
基金资助:
Kexin Bi, Shuyuan Zhang, Chen Zhang, Haoran Li, Xinye Huang, Haoyu Liu, Tong Qiu. Knowledge expression, numerical modeling and optimization application of ethylene thermal cracking: From the perspective of intelligent manufacturing[J]. Chinese Journal of Chemical Engineering, 2021, 38(10): 1-17.
Kexin Bi, Shuyuan Zhang, Chen Zhang, Haoran Li, Xinye Huang, Haoyu Liu, Tong Qiu. Knowledge expression, numerical modeling and optimization application of ethylene thermal cracking: From the perspective of intelligent manufacturing[J]. 中国化学工程学报, 2021, 38(10): 1-17.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2021.03.033
[1] I. Amghizar, L.A. Vandewalle, K.M. Van Geem, G.B. Marin, New trends in olefin production, Engineering 3 (2017) 171-178 [2] S.M. Sadrameli, Thermal/catalytic cracking of hydrocarbons for the production of olefins: a state-of-the-art review I: Thermal cracking review, Fuel 140 (2015) 102-115 [3] J. Ge, F. Wang, H.X. Sun, L.L. Fu, M.W. Sun, Research on the maturity of big data management capability of intelligent manufacturing enterprise, Syst. Res. Behav. Sci. 37 (4) (2020) 646-662 [4] H. Zhang, X. Zhao, The review of lightolefins production technology, Chem. Ind. 32 (2014) 17-21 [5] R. Al, C.R. Behera, K.V. Gernaey, G. Sin, Stochastic simulation-based superstructure optimization framework for process synthesis and design under uncertainty, Comput. Chem. Eng. 143 (2020) 107118 [6] O.J. Fisher, N.J. Watson, J.E. Escrig, R. Witt, L. Porcu, D. Bacon, M. Rigley, R.L. Gomes, Considerations, challenges and opportunities when developing data-driven models for process manufacturing systems, Comput. Chem. Eng. 140 (2020) 106881 [7] Y. Chen, Z.H. Yuan, B.Z. Chen, Process optimization with consideration of uncertainties—An overview, Chin. J. Chem. Eng. 26 (8) (2018) 1700-1706 [8] S. Chen, Analysis of current status of steam cracking feed production and measures for maximization of steam cracking feed, China Pet. Process. Petrochem. Technol. 8 (2005) 41-46 [9] A. Hinkle, E.J. Shin, M.W. Liberatore, A.M. Herring, M. Batzle, Correlating the chemical and physical properties of a set of heavy oils from around the world, Fuel 87 (13-14) (2008) 3065-3070 [10] K.J. Li, B.A. Akeredolu, A.M. Renehan, Y. Yang, M. Batzle, R.J. Evans, J.R. Dorgan, M.W. Liberatore, A.M. Herring, Correlation of chemical and physical properties of an Alaska heavy oil from the Ugnu formation, Fuel 103 (2013) 843-849 [11] D. Molina V, U.N. Uribe, J. Murgich, Correlations between SARA fractions and physicochemical properties with 1H NMR spectra of vacuum residues from Colombian crude oils, Fuel 89 (1) (2010) 185-192 [12] M.R. Riazi, T.A. Al-Sahhaf, Physical properties of heavy petroleum fractions and crude oils, Fluid Phase Equilib. 117 (1-2) (1996) 217-224 [13] O. Alomair, M. Jumaa, A. Alkoriem, M. Hamed, Heavy oil viscosity and density prediction at normal and elevated temperatures, J. Petroleum Explor. Prod. Technol. 6 (2) (2016) 253-263 [14] K.X. Bi, T. Qiu, Elsevier, Amsterdam (2018) 2005-2010 [15] K.X. Bi, T. Qiu, An intelligent SVM modeling process for crude oil properties prediction based on a hybrid GA-PSO method, Chin. J. Chem. Eng. 27 (8) (2019) 1888-1894 [16] D.S. Stratiev, S. Sotirov, I. Shishkova, A. Nedelchev, I. Sharafutdinov, A. Vely, M. Mitkova, D. Yordanov, E. Sotirova, V. Atanassova, K. Atanassov, D.D. Stratiev, N. Rudnev, S. Ribagin, Investigation of relationships between bulk properties and fraction properties of crude oils by application of the intercriteria analysis, Petroleum Sci. Technol. 34 (13) (2016) 1113-1120 [17] Z.D. Wang, M. Fingas, K. Li, Fractionation of a light crude oil and identification and quantitation of aliphatic, aromatic, and biomarker compounds by GC-FID and GC-MS, Part I, J. Chromatogr. Sci. 32 (1994) 361-366 [18] Z.D. Wang, M. Fingas, K. Li, Fractionation of a light crude oil and identification and quantitation of aliphatic, aromatic, and biomarker compounds by GC-FID and GC-MS, part II, J. Chromatogr. Sci. 32 (9) (1994) 367-382 [19] A. Giri, M. Coutriade, A. Racaud, K. Okuda, J. Dane, R.B. Cody, J.F. Focant, Molecular characterization of volatiles and petrochemical base oils by photo-ionization GC×GC-TOF-MS, Anal. Chem. 89 (10) (2017) 5395-5403 [20] L. Zhang, B. Chen, Applications of shannon's entropy theory to naphtha pyrolysis simulation, Chem. Eng. Technol. 35 (2) (2012) 281-286 [21] D.S. Stratiev, I.K. Shishkova, E. Nikolaychuk, I.M. Sharafutdinov, A. Vely, M. Mitkova, D. Yordanov, N. Rudnev, Relationship of the aromatic structural types in vacuum gas oil to empirical correlations based on bulk properties, Petroleum Sci. Technol. 34 (9) (2016) 860-865 [22] D. Stratiev, I. Shishkova, E. Nikolaychuk, W. Ijlstra, M. Caillot, Feed properties effect on the performance of vacuum residue ebullated bed H-Oil hydrocracking, Refinery Technology (4) (2019) 112-117 [23] D. Stratiev, I. Shishkova, R. Dinkov, R. Nikolova, M. Mitkova, K. Stanulov, R. Sharpe, C.A. Russell, A. Obryvalina, R. Telyashev, Reactivity and stability of vacuum residual oils in their thermal conversion, Fuel 123 (2014) 133-142 [24] D. Stratiev, I. Shishkova, T. Tsaneva, M. Mitkova, D. Yordanov, Investigation of relations between properties of vacuum residual oils from different origin, and of their deasphalted and asphaltene fractions, Fuel 170 (2016) 115-129 [25] D.M. Jewell, J.H. Weber, J.W. Bunger, H. Plancher, D.R. Latham, Ion-exchange, coordination, and adsorption chromatographic separation of heavy-end petroleum distillates, Anal. Chem. 44 (8) (1972) 1391-1395 [26] D.M. Trauth, S.M. Stark, T.F. Petti, M. Neurock, M.T. Klein, Representation of the molecular structure of petroleum resid through characterization and Monte Carlo modeling, Energy Fuels 8 (3) (1994) 576-580 [27] D.M. Campbell, M.T. Klein, Construction of a molecular representation of a complex feedstock by Monte Carlo and quadrature methods, Appl. Catal. A: Gen. 160 (1) (1997) 41-54 [28] J.J. Verstraete, P. Schnongs, H. Dulot, D. Hudebine, Molecular reconstruction of heavy petroleum residue fractions, Chem. Eng. Sci. 65 (1) (2010) 304-312 [29] L.P. de Oliveira, A. Trujillo Vazquez, J.J. Verstraete, M. Kolb, Molecular reconstruction of petroleum fractions: Application to vacuum residues from different origins, Energy Fuels 27 (7) (2013) 3622-3641 [30] B. Peng, Molecular modelling of petroleum processes, University of Manchester, Ph.D. Thesis, 1999. [31] M.I. Ahmad, N. Zhang, M. Jobson, Molecular components-based representation of petroleum fractions, Chem. Eng. Res. Des. 89 (4) (2011) 410-420 [32] S.P. Pyl, K.M. van Geem, M.F. Reyniers, G.B. Marin, Molecular reconstruction of complex hydrocarbon mixtures: An application of principal component analysis, AIChE J. 56 (12) (2010) 3174-3188 [33] S.P. Pyl, Z. Hou, K.M. van Geem, M.F. Reyniers, G.B. Marin, M.T. Klein, Modeling the composition of crude oil fractions using constrained homologous series, Ind. Eng. Chem. Res. 50 (18) (2011) 10850-10858 [34] K.X. Bi, T. Qiu, Novel naphtha molecular reconstruction process using a self-adaptive cloud model and hybrid genetic algorithm-particle swarm optimization algorithm, Ind. Eng. Chem. Res. 58 (36) (2019) 16753-16760 [35] L. Pereira de Oliveira, J.J. Verstraete, M. Kolb, A Monte Carlo modeling methodology for the simulation of hydrotreating processes, Chem. Eng. J. 207-208 (2012) 94-102 [36] M. Lopez Abelairas, L.P. de Oliveira, J.J. Verstraete, Application of Monte Carlo techniques to LCO gas oil hydrotreating: Molecular reconstruction and kinetic modelling, Catal. Today 271 (2016) 188-198 [37] H. Mei, H. Cheng, Z.L. Wang, J.L. Li, Molecular characterization of petroleum fractions using state space representation and its application for predicting naphtha pyrolysis product distributions, Chem. Eng. Sci. 164 (2017) 81-89 [38] D. Stratiev, I. Shishkova, I. Tankov, A. Pavlova, Challenges in characterization of residual oils. A review, J. Petroleum Sci. Eng. 178 (2019) 227-250 [39] R.J. Quann, S.B. Jaffe, Structure-oriented lumping: Describing the chemistry of complex hydrocarbon mixtures, Ind. Eng. Chem. Res. 31 (11) (1992) 2483-2497 [40] S.B. Jaffe, H. Freund, W.N. Olmstead, Extension of structure-oriented lumping to vacuum residua, Ind. Eng. Chem. Res. 44 (2005) 9840-9852 [41] L. Tian, J. Wang, B. Shen, J. Liu, Building a kinetic model for steam cracking by the method of structure-oriented lumping, Energy Fuels. 24 (2010) 4380-4386 [42] L.D. Tian, B.X. Shen, J.C. Liu, Building and application of delayed coking structure-oriented lumping model, Ind. Eng. Chem. Res. 51 (10) (2012) 3923-3931 [43] Y.B. Pan, B.L. Yang, X.W. Zhou, Feedstock molecular reconstruction for secondary reactions of fluid catalytic cracking gasoline by maximum information entropy method, Chem. Eng. J. 281 (2015) 945-952 [44] J.C. Chen, Z. Fang, T. Qiu, Molecular reconstruction model based on structure oriented lumping and group contribution methods, Chin. J. Chem. Eng. 26 (8) (2018) 1677-1683 [45] S.M. Sadrameli, Thermal/catalytic cracking of liquid hydrocarbons for the production of olefins: a state-of-the-art review II: Catalytic cracking review, Fuel 173 (2016) 285-297 [46] M. Fakhroleslam, S.M. Sadrameli, Thermal/catalytic cracking of hydrocarbons for the production of olefins; A state-of-the-art review III: Process modeling and simulation, Fuel 252 (2019) 553-566 [47] Z. Belohlav, P. Zamostny, T. Herink, The kinetic model of thermal cracking for olefins production, Chem. Eng. Process.: Process. Intensif. 42 (6) (2003) 461-473 [48] F.O. Rice, K.F. Herzfeld, The thermal decomposition of organic compounds from the standpoint of free radicals. vi. The mechanism of some chain reactions. Selected Readings in Chemical Kinetics, Elsevier, Amsterdam, (1967) 154-170. [49] M.L. Poutsma, Fundamental reactions of free radicals relevant to pyrolysis reactions, J. Anal. Appl. Pyrolysis 54 (1-2) (2000) 5-35 [50] K.X. Bi, C. Zhang, T. Qiu, An ingenious characterization of reaction network using sub-network reconstruction, Comput. Chem. Eng. 134 (2020) 106695 [51] Z. Fang, T. Qiu, B.Z. Chen, Improvement of ethylene cracking reaction network with network flow analysis algorithm, Comput. Chem. Eng. 91 (2016) 182-194 [52] F. Hua, Z. Fang, T. Qiu, Application of convolutional neural networks to large-scale naphtha pyrolysis kinetic modeling, Chin. J. Chem. Eng. 26 (12) (2018) 2562-2572 [53] P.E. Savage, Mechanisms and kinetics models for hydrocarbon pyrolysis, J. Anal. Appl. Pyrolysis 54 (1-2) (2000) 109-126 [54] K.M. Sundaram, G.F. Froment, Modeling of thermal cracking kinetics—I: Thermal cracking of ethane, propane and their mixtures, Chem. Eng. Sci. 32 (6) (1977) 601-608 [55] K.M. Sundaram, G.F. Froment, Modeling of thermal cracking kinetics—II: Cracking of iso-butane, of n-butane and of mixtures ethane—propane—n-butane, Chem. Eng. Sci. 32 (1977) 609-617 [56] P.S. van Damme, G.F. Froment, W.B. Balthasar, Scaling up of naphtha cracking coils, Ind. Eng. Chem. Proc. Des. Dev. 20 (2) (1981) 366-376 [57] P. Kumar, D. Kunzru, Modeling of naphtha pyrolysis, Ind. Eng. Chem. Proc. Des. Dev. 24 (3) (1985) 774-782 [58] X. Gao, B. Chen, X. He, Estimation of the selectivities of the first-order reaction in naphtha pyrolysis, Comput. 22 (2005) 1119-1122 [59] A. Kossiakoff, F.O. Rice, Thermal decomposition of hydrocarbons, resonance stabilization and isomerization of free Radicals1, J. Am. Chem. Soc. 65 (4) (1943) 590-595 [60] K.M. Sundaram, G.F. Froment, Modeling of thermal cracking kinetics. 3. radical mechanisms for the pyrolysis of simple paraffins, olefins, and their mixtures, Ind. Eng. Chem. Fund. 17 (3) (1978) 174-182 [61] D.S. Aribike, A. Susu, Kinetics and mechanism of the thermal cracking of n-heptane, Thermochim Acta 127 (1988) 247-258 [62] E. Joo, S. Park, M. Lee, Pyrolysis reaction mechanism for industrial naphtha cracking furnaces, Ind. Eng. Chem. Res. 40 (11) (2001) 2409-2415 [63] K.M. van Geem, M.F. Reyniers, G.B. Marin, J. Song, W.H. Green, D.M. Matheu, Automatic reaction network generation using RMG for steam cracking of n-hexane, AIChE J. 52 (2) (2006) 718-730 [64] P. Zhao, S.M. Nackman, C.K. Law, On the application of betweenness centrality in chemical network analysis: Computational diagnostics and model reduction, Combust. Flame 162 (8) (2015) 2991-2998 [65] D.L. Chapman, L.K. Underhill, LV.—The interaction of chlorine and hydrogen. The influence of mass, J. Chem. Soc. Trans. 103 (1913) 496-508 [66] T. Turanyi, A.S. Tomlin, M.J. Pilling, On the error of the quasi-steady-state approximation, J. Phys. Chem. 97 (1) (1993) 163-172 [67] E. Ranzi, M. Dente, A. Goldaniga, G. Bozzano, T. Faravelli, Lumping procedures in detailed kinetic modeling of gasification, pyrolysis, partial oxidation and combustion of hydrocarbon mixtures, Prog. Energy Combust. Sci. 27 (1) (2001) 99-139 [68] T. Turányi, T. Bérces, S. Vajda, Reaction rate analysis of complex kinetic systems, Int. J. Chem. Kinetics 21 (2) (1989) 83-99 [69] G. Simm, A.C. Vaucher, M. Reiher, Exploration of reaction pathways and chemical transformation networks, J. Phys. Chem. A 123 (2) (2019) 385-399 [70] S. Vajda, P. Valko, T. Turányi, Principal component analysis of kinetic models, Int. J. Chem. Kinetics 17 (1) (1985) 55-81 [71] S.H. Lam, D.A. Goussis, Understanding complex chemical kinetics with computational singular perturbation, Symp. Int. Combust. 22 (1) (1989) 931-941 [72] S.H. Lam, D.A. Goussis, The CSP method for simplifying kinetics, Int. J. Chem. Kinetics 26 (4) (1994) 461-486 [73] Z. Till, T. Varga, J. Sója, N. Miskolczi, T. Chován, Reduction of lumped reaction networks based on global sensitivity analysis, Chem. Eng. J. 375 (2019) 121920 [74] T.F. Lu, C.K. Law, A directed relation graph method for mechanism reduction, Proc. Combust. Inst. 30 (1) (2005) 1333-1341 [75] J.A.M. Kuipers, W.P.M. van Swaaij, Application of computational fluid dynamics to chemical reaction engineering, Rev. Chem. Eng. 13 (3) (1997) 1-118 [76] G.F. Froment, Thermal cracking for olefins production. Fundamentals and their application to industrial problems, Chem. Eng. Sci. 36 (8) (1981) 1271-1282 [77] G.F. Froment, Kinetics and reactor design in the thermal cracking for olefins production, Chem. Eng. Sci. 48 (1) (1993) 199. [78] K.M. van Geem, R. Žajdlík, M.F. Reyniers, G.B. Marin, Dimensional analysis for scaling up and down steam cracking coils, Chem. Eng. J. 134 (1-3) (2007) 3-10 [79] M. Dente, E. Ranzi, A.G. Goossens, Detailed prediction of olefin yields from hydrocarbon pyrolysis through a fundamental simulation model (SPYRO), Comput. Chem. Eng. 3 (1-4) (1979) 61-75 [80] P.J. Clymans, G.F. Froment, Computer-generation of reaction paths and rate equations in the thermal cracking of normal and branched paraffins, Comput. Chem. Eng. 8 (2) (1984) 137-142 [81] L. Zhang, H.Z. Wang, T. Qiu, B.Z. Chen, Simulation and optimization of multi-period steam cracking process, in: Advances in Petrochemicals, InTech, Rijeka, Croatia, 2015. [82] C.W. Gear, L.R. Petzold, ODE methods for the solution of differential/algebraic systems, SIAM J. Numer. Anal. 21 (4) (1984) 716-728 [83] X.P. Wang, L.X. Tang, Multiobjective operation optimization of naphtha pyrolysis process using parallel differential evolution, Ind. Eng. Chem. Res. 52 (40) (2013) 14415-14428 [84] M. Sedighi, K. Keyvanloo, J. Towfighi, Modeling of thermal cracking of heavy liquid hydrocarbon: Application of kinetic modeling, artificial neural network, and neuro-fuzzy models, Ind. Eng. Chem. Res. 50 (3) (2011) 1536-1547 [85] B.R. Hough, D.A.C. Beck, D.T. Schwartz, J. Pfaendtner, Application of machine learning to pyrolysis reaction networks: Reducing model solution time to enable process optimization, Comput. Chem. Eng. 104 (2017) 56-63 [86] A. Habibi, B. Merci, G.J. Heynderickx, Impact of radiation models in CFD simulations of steam cracking furnaces, Comput. Chem. Eng. 31 (11) (2007) 1389-1406 [87] P.A. Reyniers, C.M. Schietekat, B. Kong, A. Passalacqua, K.M. van Geem, G.B. Marin, CFD simulations of industrial steam cracking reactors: turbulence-chemistry interaction and dynamic zoning, Ind. Eng. Chem. Res. 56 (51) (2017) 14959-14971 [88] D.J. van Cauwenberge, C.M. Schietekat, J. Floré, K.M. van Geem, G.B. Marin, CFD-based design of 3D pyrolysis reactors: RANS vs. LES, Chem. Eng. J. 282 (2015) 66-76 [89] D.J. van Cauwenberge, L.A. Vandewalle, P.A. Reyniers, K.M. van Geem, G.B. Marin, J. Floré, Periodic reactive flow simulation: Proof of concept for steam cracking coils, AIChE J. 63 (5) (2017) 1715-1726 [90] H.D. Zhu, L. Zhang, Simulation of dichloroethane pyrolysis process, Chem. React. Eng. Technol. 11 (1995) 251-258 [91] W.E. Lobo, J.E. Evans, Heat transfer in the radiant section of petroleum heaters, Trans. Am. Inst. Chem. Eng. 35 (1939) 748-788. [92] H.C. Hottel, A.F. Sarofim, Radiative transfer, McGraw-Hill, New York, USA, 1967. [93] W.G. Zhou, T. Qiu, Zone modeling of radiative heat transfer in industrial furnaces using adjusted Monte-Carlo integral method for direct exchange area calculation, Appl. Therm. Eng. 81 (2015) 161-167 [94] F. Hua, Z. Fang, T. Qiu, Recirculation and reaction hybrid intelligent modeling and simulation for industrial ethylene cracking furnace, CIESC J. 69 (2018) 923-930 [95] G.H. Hu, H.G. Wang, F. Qian, K.M. van Geem, C.M. Schietekat, G.B. Marin, Coupled simulation of an industrial naphtha cracking furnace equipped with long-flame and radiation burners, Comput. Chem. Eng. 38 (2012) 24-34 [96] G. Hu, C.M. Schietekat, Y. Zhang, F. Qian, G. Heynderickx, K.M. Van Geem, G.B. Marin, Impact of radiation models in coupled simulations of steam cracking furnaces and reactors, Ind. Eng. Chem. Res. 54 (2015) 2453-2465 [97] J. Towfighi, M. Sadrameli, A. Niaei, Coke formation mechanisms and coke inhibiting methods in pyrolysis furnaces, J. Chem. Eng. Japan 35 (10) (2002) 923-937 [98] H.Y. Cai, A. Krzywicki, M.C. Oballa, Coke formation in steam crackers for ethylene production, Chem. Eng. Process.: Process. Intensif. 41 (3) (2002) 199-214 [99] J. Lahaye, P. Badie, J. Ducret, Mechanism of carbon formation during steamcracking of hydrocarbons, Carbon 15 (2) (1977) 87-93 [100] F.D. Kopinke, G. Zimmermann, G.C. Reyniers, G.F. Froment, Relative rates of coke formation from hydrocarbons in steam cracking of naphtha. 3. Aromatic hydrocarbons, Ind. Eng. Chem. Res. 32 (11) (1993) 2620-2625 [101] F.D. Kopinke, G. Zimmermann, S. Nowak, On the mechanism of coke formation in steam cracking—conclusions from results obtained by tracer experiments, Carbon 26 (2) (1988) 117-124 [102] L.F. Albright, J.C. Marek, Mechanistic model for formation of coke in pyrolysis units producing ethylene, Ind. Eng. Chem. Res. 27 (5) (1988) 755-759 [103] K.M.V. Geem, I. Dhuyvetter, S. Prokopiev, M.F. Reyniers, D. Viennet, G.B. Marin, Coke formation in the transfer line exchanger during steam cracking of hydrocarbons, Ind. Eng. Chem. Res. 48 (23) (2009) 10343-10358 [104] G.J. Heynderickx, E.M. Schools, G.B. Marin, Coke combustion and gasification kinetics in ethane steam crackers, AIChE J. 51 (5) (2005) 1415-1428 [105] S.H. Symoens, N. Olahova, A.E. Muñoz Gandarillas, H. Karimi, M.R. Djokic, M.F. Reyniers, G.B. Marin, K.M. van Geem, State-of-the-art of coke formation during steam cracking: anti-coking surface technologies, Ind. Eng. Chem. Res. 57 (48) (2018) 16117-16136 [106] R. Karimzadeh, H.R. Godini, M. Ghashghaee, Flowsheeting of steam cracking furnaces, Chem. Eng. Res. Des. 87 (1) (2009) 36-46 [107] G.H. Hu, Y. Zhang, W.L. Du, J. Long, F. Qian, Zone method based coupled simulation of industrial steam cracking furnaces, Energy 172 (2019) 1098-1116 [108] Z. Fang, T. Qiu, W.G. Zhou, Coupled simulation of recirculation zonal firebox model and detailed kinetic reactor model in an industrial ethylene cracking furnace, Chin. J. Chem. Eng. 25 (8) (2017) 1091-1100 [109] Y.K. Jin, J.L. Li, W.L. Du, F. Qian, Multi-objective optimization of pseudo-dynamic operation of naphtha pyrolysis by a surrogate model, Chem. Eng. Technol. 38 (5) (2015) 900-906 [110] Y. Zhao, X. He, T. Qiu, B. Chen, J. Li, L. Tian, Y. Wang, Development and application of ethylene cracking simulation platform, Comput. Appl. Chem. 23 (2006) 1065-1068 [111] L. Page, S. Brin, R. Motwani, T. Winograd, The PageRank Citation Ranking: Bringing Order to the Web, Stanford InfoLab, 1999. [112] I. Koch, Petri nets - A mathematical formalism to analyze chemical reaction networks, Mol Inform 29 (12) (2010) 838-843 [113] A. Niaei, J. Towfighi, A.R. Khataee, K. Rostamizadeh, The use of ANN and the mathematical model for prediction of the main product yields in the thermal cracking of naphtha, Petroleum Sci. Technol. 25 (8) (2007) 967-982 [114] P.P. Plehiers, S.H. Symoens, I. Amghizar, G.B. Marin, C.V. Stevens, K.M. van Geem, Artificial intelligence in steam cracking modeling: a deep learning algorithm for detailed effluent prediction, Engineering 5 (6) (2019) 1027-1040 [115] K.X. Bi, B. Beykal, S. Avraamidou, I. Pappas, E.N. Pistikopoulos, T. Qiu, Integrated modeling of transfer learning and intelligent heuristic optimization for steam cracking process, Ind. Eng. Chem. Res. 59 (37) (2020) 16357-16367 [116] Y.M. Han, H. Wu, Z.Q. Geng, Q.X. Zhu, X.B. Gu, B. Yu, Review: Energy efficiency evaluation of complex petrochemical industries, Energy 203 (2020) 117893 [117] Z.Q. Geng, Y.H. Zhang, C.F. Li, Y.M. Han, Y.F. Cui, B. Yu, Energy optimization and prediction modeling of petrochemical industries: An improved convolutional neural network based on cross-feature, Energy 194 (2020) 116851 [118] Y.M. Han, R.D. Zhou, Z.Q. Geng, J. Bai, B. Ma, J.Z. Fan, A novel data envelopment analysis cross-model integrating interpretative structural model and analytic hierarchy process for energy efficiency evaluation and optimization modeling: Application to ethylene industries, J. Clean. Prod. 246 (2020) 118965 [119] Z. Wang, Y.M. Han, C.F. Li, Z.Q. Geng, J.Z. Fan, Input-output networks considering graphlet-based analysis for production optimization: Application in ethylene plants, J. Clean. Prod. 278 (2021) 123955 [120] R.W.J. Robertson, D. Hanesian, An optimization study of the pyrolysis of ethane in a tubular reactor, Ind. Eng. Chem. Proc. Des. Dev. 14 (3) (1975) 216-221 [121] X.Y. Nian, Z.L. Wang, F. Qian, A hybrid algorithm based on differential evolution and group search optimization and its application on ethylene cracking furnace, Chin. J. Chem. Eng. 21 (5) (2013) 537-543 [122] S.R. Nabavi, G.P. Rangaiah, A. Niaei, D. Salari, Multiobjective optimization of an industrial LPG thermal cracker using a first principles model, Ind. Eng. Chem. Res. 48 (21) (2009) 9523-9533 [123] S.R. Nabavi, G.P. Rangaiah, A. Niaei, D. Salari, Design optimization of an LPG thermal cracker for multiple objectives, Int. J. Chem. React. Eng. 9 (2011) A80 [124] C. Li, Q. Zhu, Z. Geng, Geng, Multi-objective particle swarm optimization hybrid algorithm: an application on industrial cracking furnace, Ind. Eng. Chem. Res. 46 (11) (2007) 3602-3609 [125] L.R. Xia, J.Z. Chu, Z.Q. Geng, A multiswarm competitive particle swarm algorithm for optimization control of an ethylene cracking furnace, Appl. Artif. Intell. 28 (1) (2014) 30-46 [126] Z.Q. Geng, Z. Wang, Q.X. Zhu, Y.M. Han, Multi-objective operation optimization of ethylene cracking furnace based on AMOPSO algorithm, Chem. Eng. Sci. 153 (2016) 21-33 [127] C.M. Ying, B. Joseph, Performance and stability analysis of LP-MPC and QP-MPC cascade control systems, AIChE J. 45 (7) (1999) 1521-1534 [128] G. Emoto, Y. Ota, H. Matsuo, M. Ogawa, D.B. Raven, R.F. Preston, J.S. Ayala, Integrated advanced control and closed-loop real-time optimization of an olefins plant. Advanced Control of Chemical Processes 1994, Elsevier, Amsterdam, (1994) 95-100. [129] R.M. Ansari, H. Imran, A.S. Hunaidy, Integration of Real-Time Optimization and Model-Predictive Control: Application to Refinery Processes, Int. J. Control Sci. Eng. 10 (2020) 1-10 [130] R. Nath, Z. Alzein, On-line dynamic optimization of olefins plants, Comput. Chem. Eng. 24 (2-7) (2000) 533-538 [131] F. Manenti, G. Buzzi-Ferraris, S. Pierucci, M. Rovaglio, H. Gulati, Elsevier, Amsterdam (2011) 452-456 [132] M.L. Darby, M. Nikolaou, J. Jones, D. Nicholson, RTO: an overview and assessment of current practice, J. Process. Control. 21 (6) (2011) 874-884 [133] A. Marchetti, B. Chachuat, D. Bonvin, Modifier-adaptation methodology for real-time optimization, Ind. Eng. Chem. Res. 48 (13) (2009) 6022-6033 [134] A. Marchetti, G. François, T. Faulwasser, D. Bonvin, Modifier adaptation for real-time optimization—methods and applications, Processes 4 (4) (2016) 55 [135] N. Abdullah, M.A. Mohd Razali, M.H.O. Ahmed, M.Z. Nuawi, M.M. Mustafa, Z. Mohd Nopiah, A. Mohamed, A.B. Mohamad, Neural network adaptive real-time optimizing control of industrial processes, Chem. Eng. Res. Bull. 19 (2017) 129 [136] J. Matias, J. Jäschke, Using a neural network for estimating plant gradients in real-time optimization with modifier adaptation, IFAC-PapersOnLine 52 (1) (2019) 808-813 [137] B. Beykal, F. Boukouvala, C.A. Floudas, N. Sorek, H. Zalavadia, E. Gildin, Global optimization of grey-box computational systems using surrogate functions and application to highly constrained oil-field operations, Comput. Chem. Eng. 114 (2018) 99-110 [138] B. Beykal, F. Boukouvala, C.A. Floudas, E.N. Pistikopoulos, Optimal design of energy systems using constrained grey-box multi-objective optimization, Comput Chem Eng 116 (2018) 488-502 [139] V.J. And, I.E. Grossmann, Cyclic scheduling of continuous parallel-process units with decaying performance, AIChE J. 44 (7) (1998) 1623-1636 [140] I. Harjunkoski, C.T. Maravelias, P. Bongers, P.M. Castro, S. Engell, I.E. Grossmann, J. Hooker, C. Méndez, G. Sand, J. Wassick, Scope for industrial applications of production scheduling models and solution methods, Comput. Chem. Eng. 62 (2014) 161-193 [141] C.A. Méndez, J. Cerdá, I.E. Grossmann, I. Harjunkoski, M. Fahl, State-of-the-art review of optimization methods for short-term scheduling of batch processes, Comput. Chem. Eng. 30 (6-7) (2006) 913-946 [142] E.P. Schulz, J.A. Bandoni, M.S. Diaz, Optimal shutdown policy for maintenance of cracking furnaces in ethylene plants, Ind. Eng. Chem. Res. 45 (8) (2006) 2748-2757 [143] X.D. Gao, B.Z. Chen, X.R. He, T. Qiu, J.C. Li, C.M. Wang, L.J. Zhang, Multi-objective optimization for the periodic operation of the naphtha pyrolysis process using a new parallel hybrid algorithm combining NSGA-II with SQP, Comput. Chem. Eng. 32 (11) (2008) 2801-2811 [144] Y.K. Jin, J.L. Li, W.L. Du, F. Qian, Integrated operation and cyclic scheduling optimization for an ethylene cracking furnaces system, Ind. Eng. Chem. Res. 54 (15) (2015) 3844-3854 [145] L.J. Su, L.X. Tang, I.E. Grossmann, Scheduling of cracking production process with feedstocks and energy constraints, Comput. Chem. Eng. 94 (2016) 92-103 [146] C.W. Liu, J. Zhang, Q. Xu, K. Li, Cyclic scheduling for best profitability of industrial cracking furnace system, Comput. Chem. Eng. 34 (4) (2010) 544-554 [147] C. Zhao, C.W. Liu, Q. Xu, Dynamic scheduling for ethylene cracking furnace system, Ind. Eng. Chem. Res. 50 (21) (2011) 12026-12040 [148] C. Zhao, C.W. Liu, Q. Xu, Cyclic scheduling for ethylene cracking furnace system with consideration of secondary ethane cracking, Ind. Eng. Chem. Res. 49 (12) (2010) 5765-5774 [149] S.J. Zhang, S.J. Wang, Q. Xu, Emission constrained dynamic scheduling for ethylene cracking furnace system, Ind. Eng. Chem. Res. 56 (5) (2017) 1327-1340 [150] M. Chen, Q. Xu, Optimal scheduling for olefin plant furnace system with consideration of inherent process upset reduction, Comput. Chem. Eng. 126 (2019) 157-167 [151] K.J. Yu, L. While, M. Reynolds, X. Wang, Z.L. Wang, Cyclic scheduling for an ethylene cracking furnace system using diversity learning teaching-learning-based optimization, Comput. Chem. Eng. 99 (2017) 314-324 [152] K.J. Yu, X. Wang, Z.L. Wang, Multiple learning particle swarm optimization with space transformation perturbation and its application in ethylene cracking furnace optimization, Knowl. - Based Syst. 96 (2016) 156-170 [153] K.J. Yu, X. Wang, Z.L. Wang, Self-adaptive multi-objective teaching-learning-based optimization and its application in ethylene cracking furnace operation optimization, Chemom. Intell. Lab. Syst. 146 (2015) 198-210 [154] K.J. Yu, L. While, M. Reynolds, X. Wang, J.J. Liang, L. Zhao, Z.L. Wang, Multiobjective optimization of ethylene cracking furnace system using self-adaptive multiobjective teaching-learning-based optimization, Energy 148 (2018) 469-481 [155] Z.H. Wang, Y.P. Feng, G. Rong, Synchronized scheduling approach of ethylene plant production and naphtha oil inventory management, Ind. Eng. Chem. Res. 53 (15) (2014) 6477-6499 [156] Y. Zhang, Y. Feng, G. Rong, New robust optimization approach induced by flexible uncertainty set: Optimization under continuous uncertainty, Ind. Eng. Chem. Res. 56 (2017) 270-287 [157] I. Tjoa, Ethylene plant scheduling system based on a MINLP formulation, Comput. Chem. Eng. 21 (1-2) (1997) S1073-S1077 [158] Z.H. Wang, Z.K. Li, Y.P. Feng, G. Rong, Integrated short-term scheduling and production planning in an ethylene plant based on Lagrangian decomposition, Can. J. Chem. Eng. 94 (9) (2016) 1723-1739 [159] H. Zhao, M.G. Ierapetritou, G. Rong, Production planning optimization of an ethylene plant considering process operation and energy utilization, Comput. Chem. Eng. 87 (2016) 1-12 [160] H. Zhao, M.G. Ierapetritou, N.K. Shah, G. Rong, Integrated model of refining and petrochemical plant for enterprise-wide optimization, Comput. Chem. Eng. 97 (2017) 194-207 [161] H. Kwon, K. Tak, J.H. Cho, J. Kim, I. Moon, Integrated decision support model for hedge trading and production planning in the petrochemical industry, Ind. Eng. Chem. Res. 56 (5) (2017) 1267-1277 [162] X. Yang, Q. Xu, K. Li, Flare minimization strategy for ethylene plants, Chem. Eng. Technol. 33 (7) (2010) 1059-1065 [163] Q. Xu, X.T. Yang, C.W. Liu, K. Li, H.H. Lou, J.L. Gossage, Chemical plant flare minimization via plantwide dynamic simulation, Ind. Eng. Chem. Res. 48 (7) (2009) 3505-3512 [164] Y.C. Zhao, J. Zhang, T. Qiu, J.S. Zhao, Q. Xu, Flare minimization during start-ups of an integrated cryogenic separation system via dynamic simulation, Ind. Eng. Chem. Res. 53 (4) (2014) 1553-1562 [165] G. Song, T. Qiu, B.Z. Chen, in: Flare minimization of ethylene plant start-up via resource-task network approach, Elsevier, Amsterdam, 2015, pp. 1871–1876. [166] H. Dinh, S.J. Zhang, Y.L. Xu, Q. Xu, F. Eljack, M. El-Halwagi, Generic approach of using dynamic simulation for industrial emission reduction under abnormal operations: Scenario study of an ethylene plant start-up, Ind. Eng. Chem. Res. 53 (39) (2014) 15089-15100 [167] X.T. Yang, Q. Xu, C. Zhao, K. Li, H.H. Lou, Pressure-driven dynamic simulation for improving the performance of a multistage compression system during plant startup, Ind. Eng. Chem. Res. 48 (20) (2009) 9195-9203 [168] S. Guang, Z. Yongchen, Z. Shengfu, Q. Tong, Z. Jinsong, Start-up process of crack gas compressorsvia dynamic simulation, CIESC J. 65 (2014) 4839-4843 [169] S. Zhang, Y. Zhao, T. Qiu, G. Song, J. Zhao, A method to refine the start-up scheme of compression and refrigeration systems in ethylene plants via dynamic simulation, Chin. J. Chem. Eng. 24 (2016) 1007-1012 [170] X. Yang, Q. Xu, Product loss minimization of an integrated cryogenic separation system, Chem. Eng. Technol. 35 (4) (2012) 635-645 [171] Y.L. Xu, H. Dinh, Q. Xu, F.T. Eljack, M.M. El-Halwagi, Flare minimization for an olefin plant shutdown via plant-wide dynamic simulation, J. Clean. Prod. 254 (2020) 120129 [172] T. Billa, S.R. Horton, M. Sahasrabudhe, C. Saravanan, Z. Hou, P. Agarwal, J. Lucio-Vega, M.T. Klein, Enhancing the value of detailed kinetic models through the development of interrogative software applications, Comput. Chem. Eng. 106 (2017) 512-528 [173] M.W.M. van Goethem, F.I. Kleinendorst, C. van Leeuwen, N. van Velzen, Equation-based SPYRO® model and solver for the simulation of the steam cracking process, Comput. Chem. Eng. 25 (4-6) (2001) 905-911 [174] P.A. Willems, G.F. Froment, Kinetic modeling of the thermal cracking of hydrocarbons. 1. Calculation of frequency factors, Ind. Eng. Chem. Res. 27 (11) (1988) 1959-1966 [175] L.P. Hillewaert, J.L. Dierickx, G.F. Froment, Computer generation of reaction schemes and rate equations for thermal cracking, AIChE J. 34 (1) (1988) 17-24 [176] E. Joo, K. Lee, M. Lee, S. Park, CRACKER—a PC based simulator for industrial cracking furnaces, Comput. Chem. Eng. 24 (2-7) (2000) 1523-1528 [177] S. Vasudevan, G.P. Rangaiah, John Wiley & Sons, Ltd, Chichester, UK (2012) 179-201 [178] F.J.O. Borralho, Detailed modelling and optimisation of an ethylene plant, Master Thesis, Técnico Lisboa, 2013. [179] M.N. Rosli, N. Aziz, Simulation of ethane steam cracking with severity evaluation, IOP Conf. Ser.: Mater. Sci. Eng. 162 (1) (2016) 012017. |
[1] | Hu Chen, Ying Wang, Puyu Wang, Yongkang Lv. Assessing quinoline removal performances of an aerobic continuous moving bed biofilm reactor (MBBR) bioaugmented with Pseudomonas citronellolis LV1 [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 132-140. |
[2] | Songsong Wang, Hong Li, Changyuan Tao, Renlong Liu, Yundong Wang, Zuohua Liu. Study on cavern evolution and performance of three mixers in agitation of yield-pseudoplastic fluids [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 111-122. |
[3] | Yuyang Kang, Yiqing Luo, Xigang Yuan. Recent progress on equation-oriented optimization of complex chemical processes [J]. Chinese Journal of Chemical Engineering, 2022, 41(1): 162-169. |
[4] | Yishan Zhou, Hao Qin, Hongye Cheng, Lifang Chen, Bingjian Zhang, Zhiwen Qi. Reactive extraction for synthesizing long chain ester butyl hexanoate intensified by deep eutectic solvent [J]. Chinese Journal of Chemical Engineering, 2021, 36(8): 120-127. |
[5] | Dongyan Li, Xi Tang, Shasha Feng. Humidity-control assists high-efficient coal fly ash removal by PTFE membrane [J]. Chinese Journal of Chemical Engineering, 2021, 40(12): 88-95. |
[6] | Yiya Wang, Tao Sun, Yinzhu Wang, Hao Wu, Yan Fang, Jiangfeng Ma, Min Jiang. Production and characterization of insoluble α-1,3-linked glucan and soluble α-1,6-linked dextran from Leuconostoc pseudomesenteroides G29 [J]. Chinese Journal of Chemical Engineering, 2021, 39(11): 211-218. |
[7] | Zhenxiao Lu, Wenxian Wang, Jun Zhou, Zhongchao Bai. FeS2@TiO2 nanorods as high-performance anode for sodium ion battery [J]. Chinese Journal of Chemical Engineering, 2020, 28(10): 2699-2706. |
[8] | Chang Liu, Lin Qi, Songyuan Yang, Yun He, Xiaoqiang Jia. Increased sedimentation of a Pseudomonas-Saccharomyces microbial consortium producing medium chain length polyhydroxyalkanoates [J]. Chinese Journal of Chemical Engineering, 2019, 27(7): 1659-1665. |
[9] | Deyu Luan, Yiming Chen, Hong Wang, Yue Wang, Xing Wei. Chaotic characteristics of pseudoplastic fluid induced by 6PBT impeller in a stirred vessel [J]. Chin.J.Chem.Eng., 2019, 27(2): 293-297. |
[10] | Miao Liu, Zhengming Gao, Yongjiu Yu, Zhipeng Li, Jing Han, Ziqi Cai, Xiongbing Huang. PIV experiment and large eddy simulation of turbulence characteristics in a confined impinging jet reactor [J]. Chin.J.Chem.Eng., 2019, 27(1): 10-20. |
[11] | Chaofei Fei, Dan Li, Xian Mao, Yu Guo, Wenheng Jing. Synthesis of ordered mesoporous manganese titanium composite oxide catalyst for catalytic ozonation [J]. Chin.J.Chem.Eng., 2018, 26(9): 1862-1872. |
[12] | Haijiao Lu, Jingkang Wang, Jun Yu, Yuefeng Wu, Ting Wang, Ying Bao, Dou Ma, Hongxun Hao. Phase equilibria for the pseudo-ternary system (NaCl+Na2SO4+H2O) of coal gasification wastewater at T=(268.15 to 373.15) K [J]. , 2017, 25(7): 955-962. |
[13] | Yong Li, Jizheng Chu, Jiarui Zhang. A new generic reaction for modeling fluid catalytic cracking risers [J]. , 2017, 25(10): 1449-1460. |
[14] | Yong Li, Jizheng Chu, Jiarui Zhang. A new generic reaction for modeling fluid catalytic cracking risers [J]. , 2017, 25(10): 1449-1460. |
[15] | Libo Gao, Qiang Zhang, Junyang Li, Ruiting Feng, Hongyan Xu, Chenyang Xue. Adsorption of Methyl Orange on Magnetically Separable Mesoporous Titania Nanocomposite [J]. , 2014, 22(10): 1168-1173. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||