[1] C. Dwivedi, N. Raje, J. Nuwad,M. Kumar, P.N. Bajaj, Synthesis and characterization of mesoporous titania microspheres and their applications, Chem. Eng. J. 193 (2012) 178-186. [2] P.F. Lee, X. Zhang, D.D. Sun, J. Du, J.O. Leckie, Synthesis of bimodal porous structured TiO2 microspherewith high photocatalytic activity forwater treatment, Colloids Surf. A 324 (1) (2008) 202-207. [3] L.M.S. Colpini, H.J. Alves, O.A.A.D. Santos, C.M.M. Costa, Discoloration and degradation of textile dye aqueous solutions with titanium oxide catalysts obtained by the sol-gel method, Dyes Pigments 76 (2) (2008) 525-529. [4] Y. Ao, J. Xu, D. Fu, C. Yuan, A simple method to prepare N-doped titania hollow spheres with high photocatalytic activity under visible light, J. Hazard. Mater. 167 (1) (2009) 413-417. [5] M. Srinivasan, T. White, Degradation of methylene blue by three-dimensionally ordered macroporous titania, Environ. Sci. Technol. 41 (12) (2007) 4405-4409. [6] P. Yang, D. Zhao, D.I. Margolese, B.F. Chmelka, G.D. Stucky, Block copolymer templating syntheses of mesoporous metal oxides with large ordering lengths and semicrystalline framework, Chem. Mater. 11 (10) (1999) 2813-2826. [7] D.M. Antonelli, Y.J. Ying, Synthesis of hexagonally packed mesoporous TiO2 by a modified sol-gelmethod, Angew. Chem. Int. Ed. Engl. 34 (18) (1995) 2014-2017. [8] J.H. Pan, X. Zhang, A.J. Du, D.D. Sun, J.O. Leckie, Self-etching reconstruction of hierarchically mesoporous F-TiO2 hollow microspherical photocatalyst for concurrent membrane water purifications, J. Am. Chem. Soc. 130 (34) (2008) 11256-11257. [9] D.S. Kim, S.Y. Kwak, The hydrothermal synthesis ofmesoporous TiO2with high crystallinity, thermal stability, large surface area, and enhanced photocatalytic activity, Appl. Catal. A 323 (2007) 110-118. [10] J.B. Joo, Q. Zhang, M. Dahl, I. Lee, J. Goebl, F. Zaera, Y. Yin, Control of the nanoscale crystallinity in mesoporous TiO2 shells for enhanced photocatalytic activity, Energy Environ. Sci. 5 (4) (2012) 6321-6327. [11] J.H. Pan, Z. Lei, W.I. Lee, Z. Xiong, Q. Wang, X.S. Zhao, Mesoporous TiO2 photocatalytic films on stainless steel for water decontamination, Catal. Sci. Technol. 2 (1) (2012) 147-155. [12] C. Guo, M. Ge, L. Liu, G. Gao, Y. Feng, Y.Wang, Directed synthesis ofmesoporous TiO2 microspheres: catalysts and their photocatalysis for bisphenol A degradation, Environ. Sci. Technol. 44 (1) (2009) 419-425. [13] K.E. Engates, H.J. Shipley, Adsorption of Pb, Cd, Cu, Zn, and Ni to titanium dioxide nanoparticles: effect of particle size, solid concentration, and exhaustion, Environ. Sci. Pollut. 18 (3) (2011) 386-395. [14] I.C. Pius, R.D. Bhanushali, Y.R. Bamankar, S.K.Mukerjee, V.N. Vaidya, Removal of plutonium from carbonate medium using titania microspheres prepared by sol-gel route, J. Radioanal. Nucl. Chem. 261 (3) (2004) 547-550. [15] D.S. Han, A. Abdel-Wahab, B. Batchelor, Surface complexation modeling of arsenic (Ⅲ) and arsenic (V) adsorption onto nanoporous titania adsorbents (NTAs), J. Colloid Interface Sci. 348 (2) (2010) 591-599. [16] F. Chen, P. Fang, Y. Gao, Z. Liu, Y. Liu, Y. Dai, Effective removal of high-chroma crystal violet over TiO2-based nanosheet by adsorption-photocatalytic degradation, Chem. Eng. J. 204-206 (2012) 107-113. [17] C. Pérez León, L. Kador, B. Peng, M. Thelakkat, Characterization of the adsorption of Ru-bpy dyes on mesoporous TiO2 films with UV-Vis, Raman, and FTIR spectroscopies, J. Phys. Chem. 110 (17) (2006) 8723-8730. [18] S. Asuha, X.G. Zhou, S. Zhao, Adsorption of methyl orange and Cr(VI) onmesoporous TiO2 prepared by hydrothermal method, J. Hazard. Mater. 181 (1) (2010) 204-210. [19] Y. Ao, J. Xu, D. Fu, C. Yuan, Photocatalytic degradation of X-3B by titania-coatedmagnetic activated carbon under UV and visible irradiation, J. Alloys Compd. 471 (1) (2009) 33-38. [20] J. Chang, Z.X. Zhong, H. Xu, Z. Yao, R.Z. Chen, Fabrication of poly(γ-glutamic acid)- coated Fe3O4 magnetic nanoparticles and their application in heavy metal removal, Chin. J. Chem. Eng. 21 (1) (2013) 1-7. [21] H.F. Liu, S.F. Ji, Y.Y. Zheng, M. Li, H. Yang, Porous TiO2-coated magnetic core-shell nanocomposites: preparation and enhanced photocatalytic activity, Chin. J. Chem. Eng. 21 (5) (2013) 569-576. [22] M. Ye, Q. Zhang, Y. Hu, J. Ge, Z. Lu, L. He, Z. Chen, Y. Yin, Magnetically recoverable core-shell nanocomposites with enhanced photocatalytic activity, Chem. Eur. J. 16 (21) (2010) 6243-6250. [23] Q. Zhang, J. Li, X. Chou, L. Gao, Z. Hai, C. Xue, Synthesis of superparamagnetic iron oxide nanoparticles in carbon reduction method, Micro Nano Lett. 8 (10) (2013) 598-601. [24] D. Huang, Y.J. Wang, Y.C. Cui, G.S. Luo, Direct synthesis of mesoporous TiO2 and its catalytic performance in DBT oxidative desulfurization, Microporous Mesoporous Mater. 116 (1) (2008) 378-385. [25] A. Bhaumik, S. Inagaki, Mesoporous titanium phosphate molecular sieves with ionexchange capacity, J. Am. Chem. Soc. 123 (4) (2001) 691. [26] M.P. Kapoor, A. Bhaumik, S. Inagaki, K. Kuraoka, T. Yazawa, Titanium containing inorganic-organic hybrid mesoporous materials with exceptional activity in epoxidation of alkenes using hydrogen peroxide, J. Mater. Chem. 12 (10) (2002) 3078-3083. [27] M. Long,W. Cai, J. Cai, B. Zhou, X. Chai, Y.Wu, Efficient photocatalytic degradation of phenol over Co3O4/BiVO3 composite under visible light irradiation, J. Phys. Chem. B 110 (41) (2006) 20211-20216. [28] Y.S. Ho, G. McKay, Pseudo-second order model for sorption processes, Process Biochem. 34 (5) (1999) 451-465. [29] X. Jia, W. He, W. Yang, H. Zhao, X. Zhang, Nanomorphological anatase TiO2: from spongy network to porous nanoparticles, Mater. Lett. 62 (12) (2008) 1896-1898. [30] J. Jiang, K. Zhao, X. Xiao, L. Zhang, Synthesis and facet-dependent photoreactivity of BiOCl single-crystalline nanosheets, J. Am. Chem. Soc. 134 (10) (2012) 4473-4476. [31] B. Saha, S. Das, J. Saikia, G. Das, Preferential and enhanced adsorption of different dyes on iron oxide nanoparticles: a comparative study, J. Phys. Chem. C 115 (16) (2011) 8024-8033. [32] W. Kangwansupamonkon, W. Jitbunpot, S. Kiatkamjornwong, Photocatalytic efficiency of TiO2/poly [acrylamide-co-(acrylic acid)] composite for textile dye degradation, Polym. Degrad. Stab. 95 (9) (2010) 1894-1902. |