[1] A. Voorhies Jr., Carbon formation in catalytic cracking, Ind. Eng. Chem. 37(1945) 318-322. [2] F.H. Blanding, Reaction rates in catalytic cracking of petroleum, Ind. Eng. Chem. 45(1953) 1186-1192. [3] I.S. Han, C.-B. Chung, Dynamic modeling and simulation of a fluidized catalytic cracking process. Part I:Process modeling, Chem. Eng. Sci. 56(2001) 1951-1971. [4] I.S. Han, C.-B. Chung, Dynamic modeling and simulation of a fluidized catalytic cracking process. Part Ⅱ:Property estimation and simulation, Chem. Eng. Sci. 56(2001) 1973-1990. [5] R.K. Gupta, V. Kumar, V.K. Srivastava, Modeling and simulation of fluid catalytic cracking unit, Rev. Chem. Eng. 21(2005) 95-131. [6] R.K. Gupta, V. Kumar, V.K. Srivastava, A new generic approach for the modeling of fluid catalytic cracking (FCC) riser reactor, Chem. Eng. Sci. 62(2007) 4510-4528. [7] J.L. Fernandes, J.J. Verstraete, C.I.C. Pinheiro, N.M.C. Oliveira, F.R. Ribeiro, Dynamic modelling of an industrial R2R FCC unit, Chem. Eng. Sci. 62(2007) 1184-1198. [8] J.L. Fernandes, C.I.C. Pinheiro, N.M.C. Oliveira, J. Inverno, F.R. Ribeiro, Model development and validation of an industrial UOP fluid catalytic cracking unit with a high-efficiency regenerator, Ind. Eng. Chem. Res. 47(2008) 850-866. [9] V.K. Koratiya, S. Kumar, S. Sinha, Modeling, simulation and optimization of FCC dower reactor, Pet. Coal 52(2010) 183-192. [10] J. Zhang, Z. Wang, H. Jiang, J. Chu, J. Zhou, S. Shao, Modeling fluid catalytic cracking risers with special pseudo-components, Chem. Eng. Sci. 102(2013) 87-98. [11] H. Sildir, Y. Arkun, U. Canan, S. Celebi, U. Karani, I. Er, Dynamic modeling and optimization of an industrial fluid catalytic cracker, J. Process Control 31(2015) 30-44. [12] C.I.C. Pinheiro, J.L. Fernandes, L. Domingues, A.J.S. Chambel, I. Graça, N.M.C. Oliveira, H.S. Cerqueira, F.R. Ribeiro, Fluid catalytic cracking (FCC) process modeling, simulation, and control, Ind. Eng. Chem. Res. 51(2012) 1-29. [13] V.W. Weekman Jr., D.M. Nace, Kinetics of catalytic cracking selectivity in fixed, moving, and fluid bed reactors, AIChE J. 16(1970) 397-404. [14] S.M. Jacob, B. Gross, S.E. Voltz, V.M. Weekman Jr., A lumping and reaction scheme for catalytic cracking, AIChE J. 22(1976) 701-713. [15] G.F. Froment, Kinetic modeling of complex catalytic reactions, Rev. Inst. Fr. Pét. 46(1991) 491-500. [16] W. Feng, E. Vynckier, G.F. Froment, Single event kinetics of catalytic cracking, Ind. Eng. Chem. Res. 32(1993) 2997-3005. [17] D.K. Liguras, D.T. Allen, Structural models for catalytic cracking. 1. Model compound reactions, Ind. Eng. Chem. Res. 28(1989) 665-673. [18] D.K. Liguras, D.T. Allen, Structural models for catalytic cracking. 2. Reactions of simulated oil mixtures, Ind. Eng. Chem. Res. 28(1989) 674-683. [19] B.E. Stangeland, A kinetic model for the prediction of hydrocracker yields, Ind. Eng. Chem. Process. Des. Dev. 13(1974) 71-76. [20] J.R. Hernández-Barajas, R. Vázquez-Román, M.G. Félix-Flores, A comprehensive estimation of kinetic parameters in lumped catalytic cracking reaction models, Fuel 88(2009) 169-178. [21] H. Eyring, The activated complex in chemical reactions, J. Chem. Phys. 3(1934) 107-115. [22] H. Eyring, The activated complex and the absolute rate of chemical reactions, Chem. Rev. 1(1935) 65-77. [23] I. Pitault, M. Forissier, J.R. Bernard, Détermination de constantes cinétiques du craquage catalytique par la modélisation du test de microactivité (MAT), Can. J. Chem. Eng. 73(1995) 498-503. [24] K. Xiong, C. Lu, Z. Wang, X. Gao, Quantitative correlations of cracking performance with physiochemical properties of FCC catalysts by a novel lump kinetic modelling method, Fuel 161(2015) 113-119. [25] X. Zhang, J. Guo, X. Zhou, X. Wang, B. Yu, C. Ge, Kinetic modeling of catalytic cracking of monocyclic cycloparaffins-Calculation of pre-exponential factors, Acta Petrolei Sin. Pet. Process. Sect. 29(2013) 283-288. [26] H. Ali, S. Rohani, Dynamic modeling and simulation of a riser-type fluid catalytic cracking unit, Chem. Eng. Technol. 20(1997) 118-130. [27] Y. Du, H. Zhao, A. Ma, C. Yang, Equivalent reactor network model for the modeling of fluid catalytic cracking riser reactor, Ind. Eng. Chem. Res. 54(2015) 8732-8742. [28] J.R. Hernández-Barajas, R. Vázquez-Román, D. Salazar-Sotelob, Multiplicity of steady states in FCC units:Effect of operating conditions, Fuel 85(2006) 849-859. [29] C. Araujo-Monroy, F. López-Isunza, Modeling and simulation of an industrial fluid catalytic cracking riser reactor using a lump-kinetic model for a distinct feedstock, Ind. Eng. Chem. Res. 45(2006) 120-128. [30] P.K. Dasila, I.R. Choudhury, S. Singh, S. Rajagopal, S.J. Chopra, D.N. Saraf, Simulation of an industrial fluid catalytic cracking riser reactor using a novel 10-lump kinetic model and some parametric, Ind. Eng. Chem. Res. 53(2014) 19660-19670. |