Chinese Journal of Chemical Engineering ›› 2021, Vol. 35 ›› Issue (7): 83-91.DOI: 10.1016/j.cjche.2021.05.004
• Review • Previous Articles Next Articles
Chengxiang Shi1,2, Jisheng Xu1, Lun Pan1,2, Xiangwen Zhang1,2, Ji-Jun Zou1,2
Received:
2020-12-17
Revised:
2021-05-08
Online:
2021-09-30
Published:
2021-07-28
Contact:
Ji-Jun Zou
Supported by:
Chengxiang Shi1,2, Jisheng Xu1, Lun Pan1,2, Xiangwen Zhang1,2, Ji-Jun Zou1,2
通讯作者:
Ji-Jun Zou
基金资助:
Chengxiang Shi, Jisheng Xu, Lun Pan, Xiangwen Zhang, Ji-Jun Zou. Perspective on synthesis of high-energy-density fuels: From petroleum to coal-based pathway[J]. Chinese Journal of Chemical Engineering, 2021, 35(7): 83-91.
Chengxiang Shi, Jisheng Xu, Lun Pan, Xiangwen Zhang, Ji-Jun Zou. Perspective on synthesis of high-energy-density fuels: From petroleum to coal-based pathway[J]. 中国化学工程学报, 2021, 35(7): 83-91.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2021.05.004
[1] H.S. Chung, C.S.H. Chen, R.A. Kremer, J.R. Boulton, G.W. Burdette, Recent developments in high-energy density liquid hydrocarbon fuels, Energy Fuels 13(3) (1999) 641-649. [2] X.W. Zhang, L. Pan, L. Wang, J.J. Zou, Review on synthesis and properties of high-energy-density liquid fuels:Hydrocarbons, nanofluids and energetic ionic liquids, Chem. Eng. Sci. 180(2018) 95-125. [3] X.Y. Wang, T.H. Jia, L. Pan, Q. Liu, Y.M. Fang, J.J. Zou, X.W. Zhang, Review on the relationship between liquid aerospace fuel composition and their physicochemical properties, Trans. Tianjin Univ. 27(2) (2021) 87-109. [4] Y.H. Li, J.J. Zou, X.W. Zhang, L. Wang, Z.T. Mi, Product distribution of tricyclopentadiene from cycloaddition of dicyclopentadiene and cyclopentadiene:A theoretical and experimental study, Fuel 89(9) (2010) 2522-2527. [5] E.H. Xing, X.W. Zhang, L. Wang, Z.T. Mi, Greener synthesis route for Jet Propellant-10:The utilization of zeolites to replace AlCl3, Green Chem. 9(6) (2007) 589-593. [6] J.J. Zou, X.W. Zhang, J. Kong, L. Wang, Hydrogenation of Dicyclopentadiene over amorphous nickel alloy catalyst SRNA-4, Fuel 87(17-18) (2008) 3655-3659. [7] J.J. Song, Z.F. Huang, L. Pan, J.J. Zou, X.W. Zhang, L. Wang, Oxygen-deficient tungsten oxide as versatile and efficient hydrogenation catalyst, ACS Catal. 5(11) (2015) 6594-6599. [8] P.R von Schleyer, M.M. Donaldson, The relative stability of bridged hydrocarbons. II. endo- and exo-trimethylenenorbornane. the formation of adamantane1, 2, J. Am. Chem. Soc. 82(17) (1960) 4645-4651. [9] M. Hao, W. Wu, S. Qi, B. Yang, Kinetic study of the isomerization for endotetrahydrodicyclopentadiene over AlCl3 catalyst, Proceedings of the 2011 Second International Conference on Mechanic Automation and Control Engineering, IEEE, Inner Mongolia, China, 2011, pp. 2279-2282. (in Chinese) [10] X.W. Zhang, Q. Miao, J.J. Zou, E.H. Xing, L. Wang, Z.T. Mi, Zeolite catalytic isomerization of endo-THDCPD to exo-THDCPD, J. Chem. Ind. Eng. China 58(12) (2007) 3059-3063. [11] M.Y. Huang, J.C. Wu, F.S. Shieu, J.J. Lin, Preparation of high energy fuel JP-10 by acidity-adjustable chloroaluminate ionic liquid catalyst, Fuel 90(3) (2011) 1012-1017. [12] L. Wang, J.J. Zou, X.W. Zhang, L. Wang, Isomerization of tetrahydrodicyclopentadiene using ionic liquid:Green alternative for Jet Propellant-10 and adamantane, Fuel 91(1) (2012) 164-169. [13] X.W. Zhang, K. Jiang, Q. Jiang, J.J. Zou, L. Wang, Z.T. Mi, Novel endo- to exoisomerization of dicyclopentadiene, Chin. Chem. Lett. 18(6) (2007) 673-676. [14] H. Han, J.J. Zou, X.W. Zhang, L. Wang, L. Wang, Endo- to exo-isomerization of dicyclopentadiene over zeolites, Appl. Catal. A:Gen. 367(1-2) (2009) 84-88. [15] J.J. Zou, Y. Xu, X.W. Zhang, L. Wang, Isomerization of endo-dicyclopentadiene using Al-grafted MCM-41, Appl. Catal. A:Gen. 421-422(2012) 79-85. [16] B.M. Guo, Y. Wang, L. Wang, X.W. Zhang, G.Z. Liu, Thermal decomposition and kinetics of a high-energy-density hydrocarbon fuel:tetrahydrotricyclopentadiene (THTCPD), Energy Fuels 30(1) (2016) 230-238. [17] J. Xiao, X.L. Liu, L. Pan, C.X. Shi, X.W. Zhang, J.J. Zou, Heterogeneous photocatalytic organic transformation reactions using conjugated polymersbased materials, ACS Catal. 10(20) (2020) 12256-12283. [18] S.J. Kim, J.K. Jeon, J. Han, J.H. Yim, Synthesis of tricyclopentadiene using ionic liquid supported mesoporous silica catalysts, Appl. Chem. Eng. 27(2) (2016) 190-194. [19] Q. Deng, X.W. Zhang, L. Wang, J.J. Zou, Catalytic isomerization and oligomerization of endo-dicyclopentadiene using alkali-treated hierarchical porous HZSM-5, Chem. Eng. Sci. 135(2015) 540-546. [20] J.J. Zou, Z.Q. Xiong, L. Wang, X.W. Zhang, Z.T. Mi, Preparation of Pd-B/c-Al2O3 amorphous catalyst for the hydrogenation of tricyclopentadiene, J. Mol. Catal. A:Chem. 271(1-2) (2007) 209-215. [21] J.J. Zou, Z.Q. Xiong, X.W. Zhang, G.Z. Liu, L. Wang, Z.T. Mi, Kinetics of tricyclopentadiene hydrogenation over Pd-B/c-Al2O3 amorphous catalyst, Ind. Eng. Chem. Res. 46(13) (2007) 4415-4420. [22] J.J. Zou, L. Pan, X.W. Zhang, L. Wang, Photoisomerization of norbornadiene to quadricyclane using Ti-containing photocatalysts, Molecular PhotochemistryVarious Aspects, InTechOpen (2012) 41-62. [23] J.J. Zou, X.W. Zhang, L. Pan, High-energy-density fuels for advanced propulsion:Design and synthesis, Wiley, New York, 2020. [24] L. Pan, X.E, J.J. Zou, L. Wang, X.W. Zhang, Study on synthesis of quadricyclane and its hypergolic property, Chin. J. Energ. Mater. 23(10) (2015) 959-963. (in Chinese) [25] L. Pan, R. Feng, H. Peng, J.J. Zou, L. Wang, X.W. Zhang, A solar-energy-derived strained hydrocarbon as an energetic hypergolic fuel, RSC Adv 4(92) (2014) 50998-51001. [26] G.S. Hammond, P. Wyatt, C.D. DeBoer, N.J. Turro, Photosensitized isomerization involving saturated centers, J. Am. Chem. Soc. 86(12) (1964) 2532-2533. [27] L. Pan, S.B. Wang, J.J. Zou, Z.F. Huang, L. Wang, X.W. Zhang, Ti3+-defected and V-doped TiO2 quantum dots loaded on MCM-41, Chem. Commun. 50(8) (2014) 988-990. [28] J.J. Zou, Y. Liu, L. Pan, L. Wang, X.W. Zhang, Photocatalytic isomerization of norbornadiene to quadricyclane over metal (V, Fe and Cr)-incorporated TiMCM-41, Appl. Catal. B:Environ. 95(3-4) (2010) 439-445. [29] L. Pan, J.J. Zou, X.W. Zhang, L. Wang, Photoisomerization of norbornadiene to quadricyclane using transition metal doped TiO2, Ind. Eng. Chem. Res. 49(18) (2010) 8526-8531. [30] N.F. Gol'Dshleger, B.I. Azbel', Y.I. Isakov, E.S. Shpiro, K.M. Minachev, Cyclodimerization of bicyclo[2.2.1] hepta-2, 5-diene in the presence of rhodium-containing zeolite catalysts, Russ. Chem. Bull. 43(11) (1994) 1802-1808. [31] K. Jeong, J. Kim, J. Han, B. Jeong, J.K. Jeon, Dimerization of bicyclo[2.2.1.] hepta-2, 5-diene over various zeolite catalysts, Top. Catal. 60(9) (2017) 743-749. [32] C.E. Burgess, H.H. Schobert, Direct liquefaction for production of high yields of feedstocks for specialty chemicals or thermally stable jet fuels, Fuel Process. Technol. 64(1-3) (2000) 57-72. [33] L.M. Balster, E. Corporan, M.J. DeWitt, J.T. Edwards, J.S. Ervin, J.L. Graham, S.-Y. Lee, S. Pal, D.K. Phelps, L.R. Rudnick, R.J. Santoro, H.H. Schobert, L.M. Shafer, R.C. Striebich, Z.J. West, G.R. Wilson, R. Woodward, S. Zabarnick, Development of an advanced, thermally stable, coal-based jet fuel, Fuel Process. Technol. 89(4) (2008) 364-378. [34] D. Lamprecht, Fischer-Tropsch fuel for use by the U.S. military as battlefielduse fuel of the future, Energy Fuels 21(3) (2007) 1448-1453. [35] C.A. Cohen, C.W. Muessig, Jet and rocket fuel, US Pat. 3381046(1968). [36] P.A. Muzzell, R.L. Freerks, J.P. Baltrus, D.D. Link, Composition of syntroleum S-5 and conformance to JP-5 specification, U.S. Army Tank-Automotive Research and Development Center, Warren Michigan National Automotive Center, 2004. [37] Q. Zhang, J. Kang, Y. Wang, Development of novel catalysts for Fischer-Tropsch synthesis:Tuning the product selectivity, ChemCatChem 2(9) (2010) 1030-1058. [38] M. Yang, L.J. Zhu, Y.X. Zhuo, J.C. Liang, S.R. Wang, Selective Fischer-Tropsch synthesis for jet fuel production over Y3+ modified Co/H-b catalysts, Sustain. Energy Fuels 4(7) (2020) 3528-3536. [39] X.G. Li, J.J. He, M. Meng, Y. Yoneyama, N. Tsubaki, One-step synthesis of H-b zeolite-enwrapped Co/Al2O3 Fischer-Tropsch catalyst with high spatial selectivity, J. Catal. 265(1) (2009) 26-34. [40] H. Pines, S.M. Csicsery, Alumina:Catalyst and support. XIV. dehydrogenation, dehydrocyclization and isomerization of C5- and C6-hydrocarbons over chromia-alumina catalysts, J. Am. Chem. Soc. 84(2) (1962) 292-297. [41] T. Inui, Y. Makino, F. Okazumi, S. Nagano, A. Miyamoto, Selective aromatization of light paraffins on platinum-ion-exchanged gallium-silicate bifunctional catalysts, Ind. Eng. Chem. Res. 26(4) (1987) 647-652. [42] V. Kanazirev, V. Mavrodinova, L. Kosova, G.L. Price, Conversion of C8 aromatics and n-pentane over Ga2O3/HZSM-5 mechanically mixed catalysts, Catal. Lett. 9(1-2) (1991) 35-42. [43] R.M. Dessau, N.J. Edison, Upgrading of normal pentane to cyclopentene, US Pat. 5284986(1994). [44] L.L. laccino, J.W. Bedard, T.m.W. Beutel, J.A. Kowalski, Process for conversion of acyclic C5 compounds to cyclic C5 compounds and catalyst composition for use therin, US Pat. 9849440(2017). [45] L.L. laccino, K.C.P. Leung, Processes and systems for the conversion of acyclic hydrocarbons, US Pat. (2019) 10364299. [46] L.L. laccino, K.C.P. Leung, Process and system for making cyclopentadiene and/or dicyclopentadiene, US Pat. 2017/0121244(2017). [47] L.L. laccino, X. Bao, C. Bai, J.W. Bedard, J.A. Gilcrest, W.F. Lai, Process for conversion of acylic C5 compounds to cyclic C5 compounds and formulated catalyst composition used therein, US Pat. 2018/0319722(2018). [48] L.L. laccino, J.W. Bedard, W.F. Lai, R.T. Carr, J.C. Cheng, Process for conversion of acyclic C5 compounds to cyclic C5 compounds and catalyst composition for use therin, US Pat. 10011539(2018). [49] L.L. laccino, J.W. Bedard, W.F. Lai, C.M. Evans, J.C. Cheng, Process for conversion of acyclic C5 compounds to cyclic C5 compounds and catalyst composition for use therin, US Pat. 9856187(2018). [50] L.L. laccino, R.O.V. Lemoine, Processes and systems for converting hydrocarbons to cyclopentadiene, US Pat. 10155702(2018). [51] L.L. laccino, R.O.V. Lemoine, Processes and systems for converting hydrocarbons to cyclopentadiene, US Pat. 9908825(2018). [52] L.L. laccino, R.O.V. Lemoine, Processes and systems for converting hydrocarbon to cyclopentadiene, US Pat. 10155703(2018). [53] L.L. laccino, K.C.P. Leung, Process and system for making cyclopentadiene and/or dicyclopentadiene, US Pat. 9896395(2018). [54] L.L. laccino, K.C.P. Leung, Process and system for making cyclopentadiene and/or dicyclopentadiene, US Pat. 9988324(2018). [55] L.L. laccino, K.C.P. Leung, Process and system for making cyclopentadiene and/or dicyclopentadiene, US Pat. 9919988(2018). [56] Sangar N., laccino L.L., Becker C.L., Processes and systems for the conversion of acyclic hydrocarbons, US Pat. 2018/0319717(2018). [57] Sangar N., laccino L.L., Becker C.L., Processes and systems for the conversion of acyclic hydrocarbons, US Pat. 2018/0319721(2018). [58] L.L. laccino, J.W. Bedard, K.G. Strohmaier, M.M.W. Mertens, R.T. Carr, J.C. Cheng, Process for conversion of acyclic C5 compounds to cyclic C5 compounds and catalyst composition for use therin, US Pat. 10294175(2019). [59] L.L. laccino, R.O.V. Lemoine, Integrated gas turbune and conversion system process, US Pat. 10280127(2019). [60] R.M. Kennedy, S.J. Hetzel, Formation of cyclopentadiene from 1, 3-pentadiene, Ind. Eng. Chem. 42(3) (1950) 547-552. [61] R.M. Kennedy, D. Hill, Preparation of cyclopentadiene, US Pat., 2438398(1948). [62] R.M. Kennedy, D. Hill, S.J. Hetzel, Preparation of cyclopentadiene, US Pat. 2438399(1948). [63] R.M. Kennedy, D. Hill, S.J. Hetzel, Preparation of cyclopentadiene, US Pat. 2438401(1948). [64] R.M. Kennedy, D. Hill, S.J. Hetzel, Preparation of cyclopentadiene, US Pat. 2438402(1948). [65] R.M. Kennedy, D. Hill, S.J. Hetzel, Preparation of cyclopentadiene, US Pat. 2438403(1948) [66] N.I. Shuikin, T.I. Naryshkina, Catalytic synthesis of cyclopentadiene hydrocarbons, World Petroleum Congress Proceedings (1959) 109-120. [67] T.E. Marcinkowski, Isomerization and dehydrocyclization of 1,3-pentadiene, Master Thesis, University of Central Florida, United States, 1979. [68] V.S. Fel'dblyum, T.N. Antonova, N.S. Zefirov, Cyclization and dehydrocyclization of C5 hydrocarbons over platinum nanocatalysts and in the presence of hydrogen sulfide, Doklady Chem 424(2) (2009) 27-30. [69] F.E. Frey, Pyrolysis of saturated hydrocarbons, Ind. Eng. Chem. 26(2) (1934) 198-203. [70] A.V. Grosse, J.C. Morrell, J.M. Mavity, catalytic dehydrogenation of monoolefins to diolefins source materials for synthetic rubber and resins, Ind. Eng. Chem. 32(3) (1940) 309-311. [71] F.O. Rice, M.T. Murphy, The thermal decomposition of five-membered rings, J. Am. Chem. Soc. 64(4) (1942) 896-899. [72] D.W. Vanas, W.D. Walters, The thermal decomposition of cyclopentene, J. Am. Chem. Soc. 70(12) (1948) 4035-4039. [73] B.S. Greensfelder, H.H. Voge, G.M. Good, Catalytic cracking of pure hydrocarbons, Ind. Eng. Chem. 37(12) (1945) 1168-1176. |
[1] | Kangcheng Wang, Jie Zhang, Dexian Huang. Online temperature estimation of Shell coal gasification process based on extended Kalman filter [J]. Chinese Journal of Chemical Engineering, 2022, 47(7): 134-144. |
[2] | Zhibin Ma, Xueli Zhang, Guangjun Lu, Yanxia Guo, Huiping Song, Fangqin Cheng. Hydrothermal synthesis of zeolitic material from circulating fluidized bed combustion fly ash for the highly efficient removal of lead from aqueous solution [J]. Chinese Journal of Chemical Engineering, 2022, 47(7): 193-205. |
[3] | Xing Zhang, Jingfeng Wu, Junhao Chen, Liang Lu, Lingjun Zhu, Shurong Wang. Production of aromatic hydrocarbons by co-cracking of bio-oil and ethanol over Ga2O3/HZSM-5 catalysts [J]. Chinese Journal of Chemical Engineering, 2022, 46(6): 126-133. |
[4] | Qilong Ge, Qi Tian, Sufang Wang, Fang Zhu. Synergistic effects of phosphoric acid modified hydrochar and coal gangue-based zeolite on bioavailability and accumulation of cadmium and lead in contaminated soil [J]. Chinese Journal of Chemical Engineering, 2022, 46(6): 150-160. |
[5] | Qunhong Liu, Jiangtao Yang, Hongwei Zhang, Hongming Sun, Shuzheng Wu, Bingqing Ge, Rong Wang, Pei Yuan. Tuning the properties of Ni-based catalyst via La incorporation for efficient hydrogenation of petroleum resin [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 41-50. |
[6] | Zijun Li, Shubo Wang, Sai Yao, Xueke Wang, Weiwei Li, Tong Zhu, Xiaofeng Xie. Experimental and numerical study on improvement performance by wave parallel flow field in a proton exchange membrane fuel cell [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 90-102. |
[7] | Linlan Wu, Zhengxin Jiao, Suhang Xun, Minqiang He, Lei Fan, Chao Wang, Wenshu Yang, Wenshuai Zhu, Huaming Li. Photocatalytic oxidative of Keggin-type polyoxometalate ionic liquid for enhanced extractive desulfurization in binary deep eutectic solvents [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 205-211. |
[8] | Yingjie Zhou, Wenhui Zhang, Shengwei Yu, Haibo Jiang, Chunzhong Li. Patterned catalyst layer boosts the performance of proton exchange membrane fuel cells by optimizing water management [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 246-252. |
[9] | Lingrui Cui, Jun Xu, Mannian Ren, Tao Li, Dianhua Liu, Fahai Cao. Modification of FCC slurry oil and deoiled asphalt for making high-grade paving asphalt [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 300-309. |
[10] | Teng Wang, Zihong Xia, Caixia Chen. Computational study of bubble coalescence/break-up behaviors and bubble size distribution in a 3-D pressurized bubbling gas-solid fluidized bed of Geldart A particles [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 485-496. |
[11] | Yang Liu, Hongzhi Zhang, Lun Pan, Kang Xue, Xiangwen Zhang, Ji-Jun Zou. High-energy-density gelled fuels with high stability and shear thinning performance [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 99-109. |
[12] | Muhammad Faizan, Yingwei Li, Ruirui Zhang, Xingsheng Wang, Piao Song, Ruixia Liu. Progress of vanadium phosphorous oxide catalyst for n-butane selective oxidation [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 297-315. |
[13] | Jian Chen, Lingbing Bu, Yingqi Luo. Comparative study on pressure swing adsorption system for industrial hydrogen and fuel cell hydrogen [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 112-119. |
[14] | Guorong Wu, Qiangwen Fan, Wenjie Sun, Zhiwu Yu, Zhiqian Jia, Jianguo Ma. Regulatable pervaporation performance of Zn-MOFs/polydimethylsiloxane mixed matrix pervaporation membranes [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 312-318. |
[15] | Baowen Wang, Zhongyuan Cai, Heyu Li, Yanchen Liang, Tao Jiang, Ning Ding, Haibo Zhao. Reaction characteristics investigation of CeO2-enhanced CaSO4 oxygen carrier with lignite [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 319-328. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||