Chinese Journal of Chemical Engineering ›› 2021, Vol. 35 ›› Issue (7): 70-82.DOI: 10.1016/j.cjche.2021.04.007
• Review • Previous Articles Next Articles
Yanfeng Shen1,2, Yongfeng Hu3, Meijun Wang1,2, Weiren Bao1,2, Liping Chang1,2, Kechang Xie1,2
Received:
2020-11-09
Revised:
2021-04-19
Online:
2021-09-30
Published:
2021-07-28
Contact:
Meijun Wang, Liping Chang
Supported by:
Yanfeng Shen1,2, Yongfeng Hu3, Meijun Wang1,2, Weiren Bao1,2, Liping Chang1,2, Kechang Xie1,2
通讯作者:
Meijun Wang, Liping Chang
基金资助:
Yanfeng Shen, Yongfeng Hu, Meijun Wang, Weiren Bao, Liping Chang, Kechang Xie. Speciation and thermal transformation of sulfur forms in high-sulfur coal and its utilization in coal-blending coking process: A review[J]. Chinese Journal of Chemical Engineering, 2021, 35(7): 70-82.
Yanfeng Shen, Yongfeng Hu, Meijun Wang, Weiren Bao, Liping Chang, Kechang Xie. Speciation and thermal transformation of sulfur forms in high-sulfur coal and its utilization in coal-blending coking process: A review[J]. 中国化学工程学报, 2021, 35(7): 70-82.
[1] C.L. Chou, Sulfur in coals:A review of geochemistry and origins, Int. J. Coal Geol. 100(2012) 1-13. [2] W.W. Li, Y.G. Tang, Sulfur isotopic composition of superhigh-organic-sulfur coals from the Chenxi coalfield, Southern China, Int. J. Coal Geol. 127(2014) 3-13. [3] J.S. Sinninghe Damsté, J.W. de Leeuw, Organically bound sulphur in coal:A molecular approach, Fuel Process. Technol. 30(2) (1992) 109-178. [4] S. Zhou, E.S. Garbett, R.F. Boucher, Gravity-enhanced magnetic (HGMS) coal cleaning, Ind. Eng. Chem. Res. 35(11) (1996) 4257-4263. [5] Z.X. Zhang, G.H. Yan, G.Q. Zhu, P.F. Zhao, Z.J. Ma, B. Zhang, Using microwave pretreatment to improve the high-gradient magnetic-separation desulfurization of pulverized coal before combustion, Fuel 274(2020) 117826. [6] M. Ramudzwagi, N. Tshiongo-Makgwe, W. Nheta, Recent developments in beneficiation of fine and ultra-fine coal-Review paper, J. Clean. Prod. 276(2020) 122693. [7] S.S. Ibrahim, B.E. El Anadoly, M.M. Farahat, A.Q. Selim, A.H. El-Menshawy, Separation of pyritic sulfur from Egyptian coal using falcon concentrator, Part. Sci. Technol. 32(6) (2014) 588-594. [8] Y.H. Chen, J.P. Xu, C.F. Cai, On pyrite from coal by adding pyrites depressor on the process of oil agglomeration, J. Anhui Univ. Technol. Sci. Nat. Sci. 21(2) (2006) 5-7. [9] Ö. Yas ar, T. Uslu, E. S ahinoǧlu, Fine coal recovery from washery tailings in Turkey by oil agglomeration, Powder Technol. 327(2018) 29-42. [10] B.S. Ken, B.K. Nandi, Desulfurization of high sulfur Indian coal by oil agglomeration using Linseed oil, Powder Technol. 342(2019) 690-697. [11] X. Qi, H.J. Zhang, C.Q. Zhang, Z.N. Zhu, K.K. Zhen, L. Yang, The flotation behavior of coal-pyrite in high-sulfur coal, Sep. Sci. Technol. 54(16) (2019) 2718-2728. [12] R.H. Jia, G.H. Harris, D.W. Fuerstenau, Chemical reagents for enhanced coal flotation, Coal Prep. 22(3) (2002) 123-149. [13] F.D. Ayhan, H. Abakay, A. Saydut, Desulfurization and deashing of Hazro coal via a flotation method, Energy Fuels 19(3) (2005) 1003-1007. [14] E. Sahinoglu, Cleaning of high pyritic sulfur fine coal via flotation, Adv. Powder Technol. 29(7) (2018) 1703-1712. [15] H.X. Zhang, X.Y. Ma, X.S. Dong, Z.Z. Wang, H.J. Bai, Enhanced desulfurizing flotation of high sulfur coal by sonoelectrochemical method, Fuel Process. Technol. 93(1) (2012) 13-17. [16] X.D. Yu, Z.F. Luo, D.Q. Gan, Desulfurization of high sulfur fine coal using a novel combined beneficiation process, Fuel 254(2019) 115603. [17] M.J. Wang, Y.F. Shen, Y.F. Hu, J. Kong, J.C. Wang, L.P. Chang, Effect of predesulfurization process on the sulfur forms and their transformations during pyrolysis of Yanzhou high sulfur coal, Fuel 276(2020) 118124. [18] M. Telfer, D.K. Zhang, The influence of water-soluble and acid-soluble inorganic matter on sulphur transformations during pyrolysis of low-rank coals, Fuel 80(14) (2001) 2085-2098. [19] L.J. Zhang, Z.H. Li, Y.L. Yang, Y.B. Zhou, B. Kong, J.H. Li, L.L. Si, Effect of acid treatment on the characteristics and structures of high-sulfur bituminous coal, Fuel 184(2016) 418-429. [20] K.M. Steel, J.W. Patrick, The production of ultra clean coal by sequential leaching with HF followed by HNO3, Fuel 82(15-17) (2003) 1917-1920. [21] H.G. Alam, A.Z. Moghaddam, M.R. Omidkhah, The influence of process parameters on desulfurization of Mezino coal by HNO3/HCl leaching, Fuel Process. Technol. 90(1) (2009) 1-7. [22] H. Karaca, K. Ceylan, Chemical cleaning of Turkish lignites by leaching with aqueous hydrogen peroxide, Fuel Process. Technol. 50(1) (1997) 19-33. [23] S. Mukherjee, S. Mahiuddin, P.C. Borthakur, Demineralization and desulfurization of subbituminous coal with hydrogen peroxide, Energy Fuels 15(6) (2001) 1418-1424. [24] B.P. Baruah, P. Khare, Desulfurization of oxidized Indian coals with solvent extraction and alkali treatment, Energy Fuels 21(4) (2007) 2156-2164. [25] A. Saydut, Y. Tonbul, A. Baysal, M.Z. Duz, C. Hamamci, Froth flotation pretreatment for enhancing desulfurization of coal with sodium hydroxide, J. Sci. Ind. Res. 66(1) (2007) 72-74. [26] K. Sugawara, T. Kato, H. Okawa, N. Worasuwannarak, Distribution of sulfur during solvent extraction of coals and desulfurization of extracted product, J. Chem. Eng. Japan 52(7) (2019) 610-615. [27] C.M. White, M.L. Lee, Identification and geochemical significance of some aromatic components of coal, Geochim. Cosmochim. Acta 44(11) (1980) 1825-1832. [28] C.M. White, L.J. Douglas, M.B. Perry, C.E. Schmidt, Characterization of extractable organosulfur constituents from Bevier seam coal, Energy Fuels 1(2) (1987) 222-226. [29] G. Gryglewicz, P. Rutkowski, J. Yperman, Characterization of sulfur compounds in supercritical coal extracts by gas chromatography-mass spectrometry, Fuel Process. Technol. 77-78(2002) 167-172. [30] W. Li, S.C. Guo, Supercritical desulfurization of high rank coal with alcohol/water and alcohol/KOH, Fuel Process. Technol. 46(2) (1996) 143-155. [31] D. Borah, M.K. Baruah, I. Haque, Oxidation of high sulphur coal. 3. Desulphurisation of organic sulphur by peroxyacetic acid (produced in situ) in presence of metal ions, Fuel Process. Technol. 86(9) (2005) 959-976. [32] L.J. Xu, D.J. Zou, Y.J. Cheng, Study on removal of organic sulfur from coal by 1-propyl alcohol, Coal Convers. 29(4) (2006) 13-16. [33] E. Jorjani, B. Rezai, M. Vossoughi, M. Osanloo, Desulfurization of Tabas coal with microwave irradiation/peroxyacetic acid washing at 25, 55 and 85 C, Fuel 83(7-8) (2004) 943-949. [34] A. Das, D.K. Sharma, Organic desulfurization of Assam coal and its sulfur-rich lithotypes by sequential solvent extraction to obtain cleaner fuel, Energy Sources 23(8) (2001) 687-697. [35] L.F. Tang, S.J. Chen, D.J. Gui, X.N. Zhu, H. He, X.X. Tao, Effect of removal organic sulfur from coal macromolecular on the properties of high organic sulfur coal, Fuel 259(2020) 116264. [36] P. Liang, X.Z. Qin, G.M. Bai, Z.X. Wu, D.K. Sun, Y.Q. Zhang, T.T. Jiao, Effects of ionic liquid pretreatment on pyrolysis characteristics of a high-sulfur bituminous coal, Fuel 258(2019) 116134. [37] W. Zhao, W.J. Xu, S.T. Zhong, Z.M. Zong, Desulfurization of coal by an electrochemical-reduction flotation technique, J. China Univ. Min. Technol. 18(4) (2008) 571-574. [38] X.X. Tao, N. Xu, M.H. Xie, L.F. Tang, Progress of the technique of coal microwave desulfurization, Int. J. Coal Sci. Technol. 1(1) (2014) 113-128. [39] Y.C. Yang, X.X. Tao, X. Kang, H. He, N. Xu, L.F. Tang, L.Q. Luo, Effects of microwave/HAc-H2O2 desulfurization on properties of Gedui high-sulfur coal, Fuel Process. Technol. 143(2016) 176-184. [40] B.K. Saikia, A.M. Dutta, B.P. Baruah, Feasibility studies of de-sulfurization and de-ashing of low grade medium to high sulfur coals by low energy ultrasonication, Fuel 123(2014) 12-18. [41] B.K. Saikia, A.C. Dalmora, R. Choudhury, T. Das, S.R. Taffarel, L.F.O. Silva, Effective removal of sulfur components from Brazilian power-coals by ultrasonication (40kHz) in presence of H2O2, Ultrason. Sonochem. 32(2016) 147-157. [42] M.J. Wang, T.H. Jia, J.C. Wang, Y.F. Hu, F.R. Liu, H. Wang, L.P. Chang, Changes of sulfur forms in coal after tetrachloroethylene extraction and theirs transformations during pyrolysis, Fuel 186(2016) 726-733. [43] J. Mi, J. Ren, J.C. Wang, W.R. Bao, K.C. Xie, Ultrasonic and microwave desulfurization of coal in tetrachloroethylene, Energy Sources Part A:Recover. Util. Environ. Eff. 29(14) (2007) 1261-1268. [44] W.H. Calkins, The chemical forms of sulfur in coal:A review, Fuel 73(4) (1994) 475-484. [45] D3177-02(2007), Standard test method for total sulfur in the analysis sample of coal and coke, American Society for Testing Materials (ASTM), 2007. [46] D2492-02(2012), Standard test method for forms of sulfur in coal, American Society for Testing Materials (ASTM), 2012. [47] R. Markuszewski, Some thoughts on the difficulties in the analysis of sulfur forms in coal, J. Coal Qual. 7(1) (1988) 1-4. [48] H.D. Schultz, W.G. Proctor, Application of electron emission spectroscopy to characterize sulfur bonds in coal, Appl. Spectrosc. 27(5) (1973) 347-351. [49] W.H. Calkins, Investigation of organic sulfur-containing structures in coal by flash pyrolysis experiments, Energy Fuels 1(1) (1987) 59-64. [50] A.N. Buckley, K.W. Riley, M.A. Wilson, Heteroatom functionality in a highsulfur Chinese bituminous coal, Org. Geochem. 24(3) (1996) 389-392. [51] T. Grzybek, R. Pietrzak, H. Wachowska, X-ray photoelectron spectroscopy study of oxidized coals with different sulphur content, Fuel Process. Technol. 77-78(2002) 1-7. [52] G.P. Huffman, F.E. Huggins, S. Mitra, N. Shah, R.J. Pugmire, B. Davis, F.W. Lytle, R.B. Greegor, Investigation of the molecular structure of organic sulfur in coal by XAFS spectroscopy, Energy Fuels 3(2) (1989) 200-205. [53] G.P. Huffman, S. Mitra, F.E. Huggins, N. Shah, S. Vaidya, F.L. Lu, Quantitative analysis of all major forms of sulfur in coal by X-ray absorption fine structure spectroscopy, Energy Fuels 5(4) (1991) 574-581. [54] M.M. Taghiei, F.E. Huggins, N. Shah, G.P. Huffman, In situ X-ray absorption fine structure spectroscopy investigation of sulfur functional groups in coal during pyrolysis and oxidation, Energy Fuels 6(3) (1992) 293-300. [55] M.J. Wang, Y.F. Hu, J.C. Wang, L.P. Chang, H. Wang, Transformation of sulfur during pyrolysis of inertinite-rich coals and correlation with their characteristics, J. Anal. Appl. Pyrolysis 104(2013) 585-592. [56] G.N. George, M.L. Gorbaty, Sulfur K-edge X-ray absorption spectroscopy of petroleum asphaltenes and model compounds, J. Am. Chem. Soc. 111(9) (1989) 3182-3186. [57] G.N. George, M.L. Gorbaty, S.R. Kelemen, M. Sansone, Direct determination and quantification of sulfur forms in coals from the Argonne Premium Sample Program, Energy Fuels 5(1) (1991) 93-97. [58] M. Kasrai, J.R. Brown, G.M. Bancroft, Z. Yin, K.H. Tan, Sulphur characterization in coal from X-ray absorption near edge spectroscopy, Int. J. Coal Geol. 32(1-4) (1996) 107-135. [59] M.A. Vairavamurthy, D. Maletic, S. Wang, B. Manowitz, T. Eglinton, T. Lyons, Characterization of sulfur-containing functional groups in sedimentary humic substances by X-ray absorption near-edge structure spectroscopy, Energy Fuels 11(3) (1997) 546-553. [60] J.H. Cai, E. Morris, C.Q. Jia, Sulfur speciation in fluid coke and its activation products using K-edge X-ray absorption near edge structure spectroscopy, J. Sulfur Chem. 30(6) (2009) 555-569. [61] J. Prietzel, A. Botzaki, N. Tyufekchieva, M. Brettholle, J. Thieme, W. Klysubun, Sulfur speciation in soil by S K-edge XANES spectroscopy:Comparison of spectral deconvolution and linear combination fitting, Environ. Sci. Technol. 45(7) (2011) 2878-2886. [62] L.J. Liu, J.X. Fei, M.Q. Cui, Y.F. Hu, J. Wang, XANES spectroscopic study of sulfur transformations during co-pyrolysis of a calcium-rich lignite and a highsulfur bituminous coal, Fuel Process. Technol. 121(2014) 56-62. [63] M.J. Wang, L.J. Liu, J.C. Wang, L.P. Chang, H. Wang, Y.F. Hu, Sulfur K-edge XANES study of sulfur transformation during pyrolysis of four coals with different ranks, Fuel Process. Technol. 131(2015) 262-269. [64] N.N. Yang, H.Q. Guo, F.R. Liu, H. Zhang, Y.F. Hu, R.S. Hu, Effects of atmospheres on sulfur release and its transformation behavior during coal thermolysis, Fuel 215(2018) 446-453. [65] Y.F. Shen, M.J. Wang, Y.F. Hu, J. Kong, J.C. Wang, L.P. Chang, W.R. Bao, Transformation and regulation of sulfur during pyrolysis of coal blend with high organic-sulfur fat coal, Fuel 249(2019) 427-433. [66] Y.F. Shen, M.J. Wang, Y.C. Wu, Y.F. Hu, J. Kong, X.B. Duan, J.C. Wang, L.P. Chang, W.R. Bao, Role of gas coal in directional regulation of sulfur during coalblending coking of high organic-sulfur coking coal, Energy Fuels 34(3) (2020) 2757-2764. [67] N.N. Yang, H.Q. Guo, Y.Q. Lei, Y.B. Zhang, M.J. Wang, F.R. Liu, R.S. Hu, Y.F. Hu, XAS combined with Py-GC study on the effects of temperatures and atmospheres on sulfur release and its transformation behavior during coal pyrolysis, Fuel 250(2019) 373-380. [68] H.Q. Guo, Q. Fu, L. Zhang, F.R. Liu, Y.F. Hu, H. Zhang, R.S. Hu, Sulfur K-edge XAS study of sulfur transformation behavior during pyrolysis and co-pyrolysis of biomass and coals under different atmospheres, Fuel 234(2018) 1322-1327. [69] H.Q. Guo, H. Wu, N.N. Yang, Q. Fu, F.R. Liu, H. Zhang, R.S. Hu, Y.F. Hu, XAS combined with TG-DTG study on synergic effect on sulfur transformation during co-pyrolysis of sawdust and lignite, J. Therm. Anal. Calorim. 135(4) (2019) 2475-2480. [70] R.G. Guan, W. Li, B.Q. Li, Effects of Ca-based additives on desulfurization during coal pyrolysis, Fuel 82(15-17) (2003) 1961-1966. [71] K.T. Lee, A.R. Mohamed, S. Bhatia, K.H. Chu, Removal of sulfur dioxide by fly ash/CaO/CaSO4 sorbents, Chem. Eng. J. 114(1-3) (2005) 171-177. [72] K.T. Lee, S. Bhatia, A.R. Mohamed, Preparation and characterization of CaO/CaSO4/coal fly ash sorbent for sulfur dioxide (SO2) removal:Part I, Energy Sources Part A:Recover. Util. Environ. Eff. 28(13) (2006) 1241-1249. [73] B.D. Galloway, R.A. MacDonald, B. Padak, Characterization of sulfur products on CaO at high temperatures for air and oxy-combustion, Int. J. Coal Geol. 167(2016) 1-9. [74] X. Jia, Q.H. Wang, L. Han, L.M. Cheng, M.X. Fang, Z.Y. Luo, K.F. Cen, Sulfur transformation during the pyrolysis of coal with the addition of CaSO4 in a fixed-bed reactor, J. Anal. Appl. Pyrolysis 124(2017) 319-326. [75] X. Jia, Q.H. Wang, K.F. Cen, L.M. Cheng, Sulfur transformation during the pyrolysis of coal mixed with coal ash in a fixed bed reactor, Fuel 177(2016) 260-267. [76] J.P. Mathews, A.C.T. van Duin, A.L. Chaffee, The utility of coal molecular models, Fuel Process. Technol. 92(4) (2011) 718-728. [77] G.N.Okolo,H.W.J.P.Neomagus,R.C.Everson,M.J.Roberts,J.R.Bunt,R.Sakurovs, J.P. Mathews, Chemical-structural properties of South African bituminous coals:Insights from wide angle XRD-carbon fraction analysis, ATR-FTIR, solid state 13C NMR, and HRTEM techniques, Fuel 158(2015) 779-792. [78] G. Gryglewicz, Effectiveness of high temperature pyrolysis in sulfur removal from coal, Fuel Process. Technol. 46(3) (1996) 217-226. [79] Q.L. Sun, W. Li, H.K. Chen, B.Q. Li, Characteristic of sulfur-containing gases released from the pyrolysis of coal macerals, J. China Univ. Min. Technol. 34(4) (2005) 518-522. [80] M.I.M. Chou, M.A. Lake, R.A. Griffin, Flash pyrolysis of coal, coal maceral, and coal-derived pyrite with on-line characterization of volatile sulfur compounds, J. Anal. Appl. Pyrolysis 13(3) (1988) 199-207. [81] G. Gryglewicz, Sulfur transformations during pyrolysis of a high sulfur Polish coking coal, Fuel 74(3) (1995) 356-361. [82] G. Gryglewicz, P. Wilk, J. Yperman, D.V. Franco, I.I. Maes, J. Mullens, L.C. van Poucke, Interaction of the organic matrix with pyrite during pyrolysis of a high-sulfur bituminous coal, Fuel 75(13) (1996) 1499-1504. [83] H.K. Chen, B.Q. Li, B.J. Zhang, Decomposition of pyrite and the interaction of pyrite with coal organic matrix in pyrolysis and hydropyrolysis, Fuel 79(13) (2000) 1627-1631. [84] Z.Z. Wang, L.B. Wang, X.F. Pei, Q. Zhao, X.Y. Bai, Y. Wang, Transfer laws of various sulfur speciation during pyrolysis of Qinneng coking coal, Coal Sci. Technol. 42(4) (2014) 116-120. [85] M. Li, J.H. Yang, H.B. Xia, H.Z. Chang, H. Sun, Behavior of organic sulfur transformation during pyrolysis of high-sulfur coking coals, Coal Convers. 37(2) (2014) 42-46. [86] H.K. Chen, B.Q. Li, J.L. Yang, B.J. Zhang, Transformation of sulfur during pyrolysis and hydropyrolysis of coal, Fuel 77(6) (1998) 487-493. [87] X.L. Wang, H.Q. Guo, F.R. Liu, R.S. Hu, M.J. Wang, Effects of CO2 on sulfur removal and its release behavior during coal pyrolysis, Fuel 165(2016) 484-489. [88] Y.Q. Zhang, P. Liang, T.T. Jiao, J.F. Wu, H.W. Zhang, Effect of foreign minerals on sulfur transformation in the step conversion of coal pyrolysis and combustion, J. Anal. Appl. Pyrolysis 127(2017) 240-245. [89] S. Karaca, Desulfurization of a Turkish lignite at various gas atmospheres by pyrolysis. Effect of mineral matter, Fuel 82(12) (2003) 1509-1516. [90] B.F. Wang, S.G. Zhao, Y.R. Huang, J.J. Zhang, Effect of some natural minerals on transformation behavior of sulfur during pyrolysis of coal and biomass, J. Anal. Appl. Pyrolysis 105(2014) 284-294. [91] J.X. Fei, J. Zhang, F.C. Wang, J. Wang, Synergistic effects on co-pyrolysis of lignite and high-sulfur swelling coal, J. Anal. Appl. Pyrolysis 95(2012) 61-67. [92] F.R. Liu, W. Li, H.K. Chen, B.Q. Li, Uneven distribution of sulfurs and their transformation during coal pyrolysis, Fuel 86(3) (2007) 360-366. [93] J.D. Yan, J.L. Yang, Z.Y. Liu, SH radical:The key intermediate in sulfur transformation during thermal processing of coal, Environ. Sci. Technol. 39(13) (2005) 5043-5051. [94] Q. Zhou, H.Q. Hu, Q.R. Liu, S.W. Zhu, R. Zhao, Effect of atmosphere on evolution of sulfur-containing gases during coal pyrolysis, Energy Fuels 19(3) (2005) 892-897. [95] Z.C. Guo, Z.X. Fu, S.X. Wang, Sulfur distribution in coke and sulfur removal during pyrolysis, Fuel Process. Technol. 88(10) (2007) 935-941. [96] Z.C. Guo, H.Q. Tang, J.L. Liu, Desulfurization of coke by recycling COG in coking process, Fuel 84(7-8) (2005) 893-901. [97] Y.H. Liang, F. Wang, H. Zhang, J.P. Wang, Y.Y. Li, G.Y. Li, A ReaxFF molecular dynamics study on the mechanism of organic sulfur transformation in the hydropyrolysis process of lignite, Fuel Process. Technol. 147(2016) 32-40. [98] F.R. Liu, B.Q. Li, W. Li, Z.Q. Bai, J. Yperman, Py-MS study of sulfur behavior during pyrolysis of high-sulfur coals under different atmospheres, Fuel Process. Technol. 91(11) (2010) 1486-1490. [99] F.R. Liu, L.L. Xie, H.Q. Guo, M. Xue, R.S. Hu, H.Q. Hu, Sulfur release and transformation behaviors of sulfur-containing model compounds during pyrolysis under oxidative atmosphere, Fuel 115(2014) 596-599. [100] M. Wang, Q. Du, Y.P. Li, J.J. Xu, J.M. Gao, H. Wang, Effect of steam on the transformation of sulfur during demineralized coal pyrolysis, J. Anal. Appl. Pyrolysis 140(2019) 161-169. [101] L.N. Tian, W. Yang, Z.H. Chen, X.H. Wang, H.P. Yang, H.P. Chen, Sulfur behavior during coal combustion in oxy-fuel circulating fluidized bed condition by using TG-FTIR, J. Energy Inst. 89(2) (2016) 264-270. |
[1] | Bo Yu, Guang Fu, Xinpei Li, Libo Zhang, Jing Li, Hongtao Qu, Dongbin Wang, Qingfeng Dong, Mengmeng Zhang. Arsenic removal from acidic industrial wastewater by ultrasonic activated phosphorus pentasulfide [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 46-52. |
[2] | Yuehua Liu, Lili Chen, Shoujun Liu, Song Yang, Ju Shangguan. Role of iron-based catalysts in reducing NOx emissions from coal combustion [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 1-8. |
[3] | Anjun Liu, Jie Chen, Meng Guo, Chengmin Chen, Meihong Yang, Chao Yang. The internal circulations on internal mass transfer rate of a single drop in nonlinear uniaxial extensional flow [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 51-60. |
[4] | Wei Wang, Romain Lemaire, Ammar Bensakhria, Denis Luart. Thermogravimetric analysis and kinetic modeling of the co-pyrolysis of a bituminous coal and poplar wood [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 53-68. |
[5] | Xinyu Liu, Hongliang Sheng, Song He, Chunhua Du, Yuansheng Ma, Chichi Ruan, Chunxiang He, Huaming Dai, Yajun Huang, Yuelei Pan. Insight into pyrolysis of hydrophobic silica aerogels: Kinetics, reaction mechanism and effect on the aerogels [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 266-281. |
[6] | Haodi Tan, Minjiao Yang, Yingquan Chen, Xu Chen, Francesco Fantozzi, Pietro Bartocci, Roman Tschentscher, Federica Barontini, Haiping Yang, Hanping Chen. Preparation of aromatic hydrocarbons from catalytic pyrolysis of digestate [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 1-9. |
[7] | Hu Chen, Ying Wang, Puyu Wang, Yongkang Lv. Assessing quinoline removal performances of an aerobic continuous moving bed biofilm reactor (MBBR) bioaugmented with Pseudomonas citronellolis LV1 [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 132-140. |
[8] | Ming Chen, Huiyan Jiao, Jun Li, Zhibin Wang, Feng He, Yang Jin. Liquid–liquid two-phase flow in a wire-embedded concentric microchannel: Flow pattern and mass transfer performance [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 281-289. |
[9] | Wen Tian, Junyi Ji, Hongjiao Li, Changjun Liu, Lei Song, Kui Ma, Siyang Tang, Shan Zhong, Hairong Yue, Bin Liang. Measurements of the effective mass transfer areas for the gas–liquid rotating packed bed [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 13-19. |
[10] | Qi Han, Xin-Yuan Zhang, Hai-Bo Wu, Xian-Tai Zhou, Hong-Bing Ji. Different efficiency toward the biomimetic aerobic oxidation of benzyl alcohol in microchannel and bubble column reactors: Hydrodynamic characteristics and gas–liquid mass transfer [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 84-92. |
[11] | Yu Wang, Qunfeng Zhang, Xinlei Liu, Junqi Weng, Guanghua Ye, Xinggui Zhou. Probing deactivation by coking in catalyst pellets for dry reforming of methane using a pore network model [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 293-303. |
[12] | Qinyan Wang, Yang Jin, Jun Li, Yongbo Zhou, Ming Chen. Study on liquid–liquid two-phase mass transfer characteristics in the microchannel with deformed insert [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 114-126. |
[13] | Xueguang Li, Mengyan Yu, Changfa Zhang, Xiangtong Li, Guangqing Liu, Jianjun Dai, Chunbao Zhou, Yang Liu, Jie Fu, Yingwen Zhang, Bang Yao. Co-pyrolysis of soybean soapstock with iron slag/aluminum scrap, and characterization and analysis of their products [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 25-36. |
[14] | Zhiwei Wang, Yu Zhang, Zhi Zhang, Daowei Zhou, Zhikai Cao, Yong Sha. Investigation on catalytic distillation for ethyl acetate production with different catalytic packing structures [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 63-72. |
[15] | Ting He, Songhong Yu, Jinhui He, Dejian Chen, Jie Li, Hongjun Hu, Xingrui Zhong, Yawei Wang, Zhaohui Wang, Zhaoliang Cui. Membranes for extracorporeal membrane oxygenator (ECMO): History, preparation, modification and mass transfer [J]. Chinese Journal of Chemical Engineering, 2022, 49(9): 46-75. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 455
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 255
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||