Chinese Journal of Chemical Engineering ›› 2021, Vol. 35 ›› Issue (7): 83-91.DOI: 10.1016/j.cjche.2021.05.004
• Review • Previous Articles Next Articles
Chengxiang Shi1,2, Jisheng Xu1, Lun Pan1,2, Xiangwen Zhang1,2, Ji-Jun Zou1,2
Received:
2020-12-17
Revised:
2021-05-08
Online:
2021-09-30
Published:
2021-07-28
Contact:
Ji-Jun Zou
Supported by:
Chengxiang Shi1,2, Jisheng Xu1, Lun Pan1,2, Xiangwen Zhang1,2, Ji-Jun Zou1,2
通讯作者:
Ji-Jun Zou
基金资助:
Chengxiang Shi, Jisheng Xu, Lun Pan, Xiangwen Zhang, Ji-Jun Zou. Perspective on synthesis of high-energy-density fuels: From petroleum to coal-based pathway[J]. Chinese Journal of Chemical Engineering, 2021, 35(7): 83-91.
Chengxiang Shi, Jisheng Xu, Lun Pan, Xiangwen Zhang, Ji-Jun Zou. Perspective on synthesis of high-energy-density fuels: From petroleum to coal-based pathway[J]. 中国化学工程学报, 2021, 35(7): 83-91.
[1] H.S. Chung, C.S.H. Chen, R.A. Kremer, J.R. Boulton, G.W. Burdette, Recent developments in high-energy density liquid hydrocarbon fuels, Energy Fuels 13(3) (1999) 641-649. [2] X.W. Zhang, L. Pan, L. Wang, J.J. Zou, Review on synthesis and properties of high-energy-density liquid fuels:Hydrocarbons, nanofluids and energetic ionic liquids, Chem. Eng. Sci. 180(2018) 95-125. [3] X.Y. Wang, T.H. Jia, L. Pan, Q. Liu, Y.M. Fang, J.J. Zou, X.W. Zhang, Review on the relationship between liquid aerospace fuel composition and their physicochemical properties, Trans. Tianjin Univ. 27(2) (2021) 87-109. [4] Y.H. Li, J.J. Zou, X.W. Zhang, L. Wang, Z.T. Mi, Product distribution of tricyclopentadiene from cycloaddition of dicyclopentadiene and cyclopentadiene:A theoretical and experimental study, Fuel 89(9) (2010) 2522-2527. [5] E.H. Xing, X.W. Zhang, L. Wang, Z.T. Mi, Greener synthesis route for Jet Propellant-10:The utilization of zeolites to replace AlCl3, Green Chem. 9(6) (2007) 589-593. [6] J.J. Zou, X.W. Zhang, J. Kong, L. Wang, Hydrogenation of Dicyclopentadiene over amorphous nickel alloy catalyst SRNA-4, Fuel 87(17-18) (2008) 3655-3659. [7] J.J. Song, Z.F. Huang, L. Pan, J.J. Zou, X.W. Zhang, L. Wang, Oxygen-deficient tungsten oxide as versatile and efficient hydrogenation catalyst, ACS Catal. 5(11) (2015) 6594-6599. [8] P.R von Schleyer, M.M. Donaldson, The relative stability of bridged hydrocarbons. II. endo- and exo-trimethylenenorbornane. the formation of adamantane1, 2, J. Am. Chem. Soc. 82(17) (1960) 4645-4651. [9] M. Hao, W. Wu, S. Qi, B. Yang, Kinetic study of the isomerization for endotetrahydrodicyclopentadiene over AlCl3 catalyst, Proceedings of the 2011 Second International Conference on Mechanic Automation and Control Engineering, IEEE, Inner Mongolia, China, 2011, pp. 2279-2282. (in Chinese) [10] X.W. Zhang, Q. Miao, J.J. Zou, E.H. Xing, L. Wang, Z.T. Mi, Zeolite catalytic isomerization of endo-THDCPD to exo-THDCPD, J. Chem. Ind. Eng. China 58(12) (2007) 3059-3063. [11] M.Y. Huang, J.C. Wu, F.S. Shieu, J.J. Lin, Preparation of high energy fuel JP-10 by acidity-adjustable chloroaluminate ionic liquid catalyst, Fuel 90(3) (2011) 1012-1017. [12] L. Wang, J.J. Zou, X.W. Zhang, L. Wang, Isomerization of tetrahydrodicyclopentadiene using ionic liquid:Green alternative for Jet Propellant-10 and adamantane, Fuel 91(1) (2012) 164-169. [13] X.W. Zhang, K. Jiang, Q. Jiang, J.J. Zou, L. Wang, Z.T. Mi, Novel endo- to exoisomerization of dicyclopentadiene, Chin. Chem. Lett. 18(6) (2007) 673-676. [14] H. Han, J.J. Zou, X.W. Zhang, L. Wang, L. Wang, Endo- to exo-isomerization of dicyclopentadiene over zeolites, Appl. Catal. A:Gen. 367(1-2) (2009) 84-88. [15] J.J. Zou, Y. Xu, X.W. Zhang, L. Wang, Isomerization of endo-dicyclopentadiene using Al-grafted MCM-41, Appl. Catal. A:Gen. 421-422(2012) 79-85. [16] B.M. Guo, Y. Wang, L. Wang, X.W. Zhang, G.Z. Liu, Thermal decomposition and kinetics of a high-energy-density hydrocarbon fuel:tetrahydrotricyclopentadiene (THTCPD), Energy Fuels 30(1) (2016) 230-238. [17] J. Xiao, X.L. Liu, L. Pan, C.X. Shi, X.W. Zhang, J.J. Zou, Heterogeneous photocatalytic organic transformation reactions using conjugated polymersbased materials, ACS Catal. 10(20) (2020) 12256-12283. [18] S.J. Kim, J.K. Jeon, J. Han, J.H. Yim, Synthesis of tricyclopentadiene using ionic liquid supported mesoporous silica catalysts, Appl. Chem. Eng. 27(2) (2016) 190-194. [19] Q. Deng, X.W. Zhang, L. Wang, J.J. Zou, Catalytic isomerization and oligomerization of endo-dicyclopentadiene using alkali-treated hierarchical porous HZSM-5, Chem. Eng. Sci. 135(2015) 540-546. [20] J.J. Zou, Z.Q. Xiong, L. Wang, X.W. Zhang, Z.T. Mi, Preparation of Pd-B/c-Al2O3 amorphous catalyst for the hydrogenation of tricyclopentadiene, J. Mol. Catal. A:Chem. 271(1-2) (2007) 209-215. [21] J.J. Zou, Z.Q. Xiong, X.W. Zhang, G.Z. Liu, L. Wang, Z.T. Mi, Kinetics of tricyclopentadiene hydrogenation over Pd-B/c-Al2O3 amorphous catalyst, Ind. Eng. Chem. Res. 46(13) (2007) 4415-4420. [22] J.J. Zou, L. Pan, X.W. Zhang, L. Wang, Photoisomerization of norbornadiene to quadricyclane using Ti-containing photocatalysts, Molecular PhotochemistryVarious Aspects, InTechOpen (2012) 41-62. [23] J.J. Zou, X.W. Zhang, L. Pan, High-energy-density fuels for advanced propulsion:Design and synthesis, Wiley, New York, 2020. [24] L. Pan, X.E, J.J. Zou, L. Wang, X.W. Zhang, Study on synthesis of quadricyclane and its hypergolic property, Chin. J. Energ. Mater. 23(10) (2015) 959-963. (in Chinese) [25] L. Pan, R. Feng, H. Peng, J.J. Zou, L. Wang, X.W. Zhang, A solar-energy-derived strained hydrocarbon as an energetic hypergolic fuel, RSC Adv 4(92) (2014) 50998-51001. [26] G.S. Hammond, P. Wyatt, C.D. DeBoer, N.J. Turro, Photosensitized isomerization involving saturated centers, J. Am. Chem. Soc. 86(12) (1964) 2532-2533. [27] L. Pan, S.B. Wang, J.J. Zou, Z.F. Huang, L. Wang, X.W. Zhang, Ti3+-defected and V-doped TiO2 quantum dots loaded on MCM-41, Chem. Commun. 50(8) (2014) 988-990. [28] J.J. Zou, Y. Liu, L. Pan, L. Wang, X.W. Zhang, Photocatalytic isomerization of norbornadiene to quadricyclane over metal (V, Fe and Cr)-incorporated TiMCM-41, Appl. Catal. B:Environ. 95(3-4) (2010) 439-445. [29] L. Pan, J.J. Zou, X.W. Zhang, L. Wang, Photoisomerization of norbornadiene to quadricyclane using transition metal doped TiO2, Ind. Eng. Chem. Res. 49(18) (2010) 8526-8531. [30] N.F. Gol'Dshleger, B.I. Azbel', Y.I. Isakov, E.S. Shpiro, K.M. Minachev, Cyclodimerization of bicyclo[2.2.1] hepta-2, 5-diene in the presence of rhodium-containing zeolite catalysts, Russ. Chem. Bull. 43(11) (1994) 1802-1808. [31] K. Jeong, J. Kim, J. Han, B. Jeong, J.K. Jeon, Dimerization of bicyclo[2.2.1.] hepta-2, 5-diene over various zeolite catalysts, Top. Catal. 60(9) (2017) 743-749. [32] C.E. Burgess, H.H. Schobert, Direct liquefaction for production of high yields of feedstocks for specialty chemicals or thermally stable jet fuels, Fuel Process. Technol. 64(1-3) (2000) 57-72. [33] L.M. Balster, E. Corporan, M.J. DeWitt, J.T. Edwards, J.S. Ervin, J.L. Graham, S.-Y. Lee, S. Pal, D.K. Phelps, L.R. Rudnick, R.J. Santoro, H.H. Schobert, L.M. Shafer, R.C. Striebich, Z.J. West, G.R. Wilson, R. Woodward, S. Zabarnick, Development of an advanced, thermally stable, coal-based jet fuel, Fuel Process. Technol. 89(4) (2008) 364-378. [34] D. Lamprecht, Fischer-Tropsch fuel for use by the U.S. military as battlefielduse fuel of the future, Energy Fuels 21(3) (2007) 1448-1453. [35] C.A. Cohen, C.W. Muessig, Jet and rocket fuel, US Pat. 3381046(1968). [36] P.A. Muzzell, R.L. Freerks, J.P. Baltrus, D.D. Link, Composition of syntroleum S-5 and conformance to JP-5 specification, U.S. Army Tank-Automotive Research and Development Center, Warren Michigan National Automotive Center, 2004. [37] Q. Zhang, J. Kang, Y. Wang, Development of novel catalysts for Fischer-Tropsch synthesis:Tuning the product selectivity, ChemCatChem 2(9) (2010) 1030-1058. [38] M. Yang, L.J. Zhu, Y.X. Zhuo, J.C. Liang, S.R. Wang, Selective Fischer-Tropsch synthesis for jet fuel production over Y3+ modified Co/H-b catalysts, Sustain. Energy Fuels 4(7) (2020) 3528-3536. [39] X.G. Li, J.J. He, M. Meng, Y. Yoneyama, N. Tsubaki, One-step synthesis of H-b zeolite-enwrapped Co/Al2O3 Fischer-Tropsch catalyst with high spatial selectivity, J. Catal. 265(1) (2009) 26-34. [40] H. Pines, S.M. Csicsery, Alumina:Catalyst and support. XIV. dehydrogenation, dehydrocyclization and isomerization of C5- and C6-hydrocarbons over chromia-alumina catalysts, J. Am. Chem. Soc. 84(2) (1962) 292-297. [41] T. Inui, Y. Makino, F. Okazumi, S. Nagano, A. Miyamoto, Selective aromatization of light paraffins on platinum-ion-exchanged gallium-silicate bifunctional catalysts, Ind. Eng. Chem. Res. 26(4) (1987) 647-652. [42] V. Kanazirev, V. Mavrodinova, L. Kosova, G.L. Price, Conversion of C8 aromatics and n-pentane over Ga2O3/HZSM-5 mechanically mixed catalysts, Catal. Lett. 9(1-2) (1991) 35-42. [43] R.M. Dessau, N.J. Edison, Upgrading of normal pentane to cyclopentene, US Pat. 5284986(1994). [44] L.L. laccino, J.W. Bedard, T.m.W. Beutel, J.A. Kowalski, Process for conversion of acyclic C5 compounds to cyclic C5 compounds and catalyst composition for use therin, US Pat. 9849440(2017). [45] L.L. laccino, K.C.P. Leung, Processes and systems for the conversion of acyclic hydrocarbons, US Pat. (2019) 10364299. [46] L.L. laccino, K.C.P. Leung, Process and system for making cyclopentadiene and/or dicyclopentadiene, US Pat. 2017/0121244(2017). [47] L.L. laccino, X. Bao, C. Bai, J.W. Bedard, J.A. Gilcrest, W.F. Lai, Process for conversion of acylic C5 compounds to cyclic C5 compounds and formulated catalyst composition used therein, US Pat. 2018/0319722(2018). [48] L.L. laccino, J.W. Bedard, W.F. Lai, R.T. Carr, J.C. Cheng, Process for conversion of acyclic C5 compounds to cyclic C5 compounds and catalyst composition for use therin, US Pat. 10011539(2018). [49] L.L. laccino, J.W. Bedard, W.F. Lai, C.M. Evans, J.C. Cheng, Process for conversion of acyclic C5 compounds to cyclic C5 compounds and catalyst composition for use therin, US Pat. 9856187(2018). [50] L.L. laccino, R.O.V. Lemoine, Processes and systems for converting hydrocarbons to cyclopentadiene, US Pat. 10155702(2018). [51] L.L. laccino, R.O.V. Lemoine, Processes and systems for converting hydrocarbons to cyclopentadiene, US Pat. 9908825(2018). [52] L.L. laccino, R.O.V. Lemoine, Processes and systems for converting hydrocarbon to cyclopentadiene, US Pat. 10155703(2018). [53] L.L. laccino, K.C.P. Leung, Process and system for making cyclopentadiene and/or dicyclopentadiene, US Pat. 9896395(2018). [54] L.L. laccino, K.C.P. Leung, Process and system for making cyclopentadiene and/or dicyclopentadiene, US Pat. 9988324(2018). [55] L.L. laccino, K.C.P. Leung, Process and system for making cyclopentadiene and/or dicyclopentadiene, US Pat. 9919988(2018). [56] Sangar N., laccino L.L., Becker C.L., Processes and systems for the conversion of acyclic hydrocarbons, US Pat. 2018/0319717(2018). [57] Sangar N., laccino L.L., Becker C.L., Processes and systems for the conversion of acyclic hydrocarbons, US Pat. 2018/0319721(2018). [58] L.L. laccino, J.W. Bedard, K.G. Strohmaier, M.M.W. Mertens, R.T. Carr, J.C. Cheng, Process for conversion of acyclic C5 compounds to cyclic C5 compounds and catalyst composition for use therin, US Pat. 10294175(2019). [59] L.L. laccino, R.O.V. Lemoine, Integrated gas turbune and conversion system process, US Pat. 10280127(2019). [60] R.M. Kennedy, S.J. Hetzel, Formation of cyclopentadiene from 1, 3-pentadiene, Ind. Eng. Chem. 42(3) (1950) 547-552. [61] R.M. Kennedy, D. Hill, Preparation of cyclopentadiene, US Pat., 2438398(1948). [62] R.M. Kennedy, D. Hill, S.J. Hetzel, Preparation of cyclopentadiene, US Pat. 2438399(1948). [63] R.M. Kennedy, D. Hill, S.J. Hetzel, Preparation of cyclopentadiene, US Pat. 2438401(1948). [64] R.M. Kennedy, D. Hill, S.J. Hetzel, Preparation of cyclopentadiene, US Pat. 2438402(1948). [65] R.M. Kennedy, D. Hill, S.J. Hetzel, Preparation of cyclopentadiene, US Pat. 2438403(1948) [66] N.I. Shuikin, T.I. Naryshkina, Catalytic synthesis of cyclopentadiene hydrocarbons, World Petroleum Congress Proceedings (1959) 109-120. [67] T.E. Marcinkowski, Isomerization and dehydrocyclization of 1,3-pentadiene, Master Thesis, University of Central Florida, United States, 1979. [68] V.S. Fel'dblyum, T.N. Antonova, N.S. Zefirov, Cyclization and dehydrocyclization of C5 hydrocarbons over platinum nanocatalysts and in the presence of hydrogen sulfide, Doklady Chem 424(2) (2009) 27-30. [69] F.E. Frey, Pyrolysis of saturated hydrocarbons, Ind. Eng. Chem. 26(2) (1934) 198-203. [70] A.V. Grosse, J.C. Morrell, J.M. Mavity, catalytic dehydrogenation of monoolefins to diolefins source materials for synthetic rubber and resins, Ind. Eng. Chem. 32(3) (1940) 309-311. [71] F.O. Rice, M.T. Murphy, The thermal decomposition of five-membered rings, J. Am. Chem. Soc. 64(4) (1942) 896-899. [72] D.W. Vanas, W.D. Walters, The thermal decomposition of cyclopentene, J. Am. Chem. Soc. 70(12) (1948) 4035-4039. [73] B.S. Greensfelder, H.H. Voge, G.M. Good, Catalytic cracking of pure hydrocarbons, Ind. Eng. Chem. 37(12) (1945) 1168-1176. |
[1] | Yuehua Liu, Lili Chen, Shoujun Liu, Song Yang, Ju Shangguan. Role of iron-based catalysts in reducing NOx emissions from coal combustion [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 1-8. |
[2] | Xun Tao, Fan Zhou, Xinlei Yu, Songling Guo, Yunfei Gao, Lu Ding, Guangsuo Yu, Zhenghua Dai, Fuchen Wang. Effect of carbon dioxide on oxy-fuel combustion of hydrogen sulfide: An experimental and kinetic modeling [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 105-117. |
[3] | Jian Han, Xinhua Liu, Shanwei Hu, Nan Zhang, Jingjing Wang, Bin Liang. Optimization of decoupling combustion characteristics of coal briquettes and biomass pellets in household stoves [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 182-192. |
[4] | Jiangshan Qu, Jianbo Zhang, Huiquan Li, Shaopeng Li, Da Shi, Ruiqi Chang, Wenfen Wu, Ganyu Zhu, Chennian Yang, Chenye Wang. Occurrence, leaching behavior, and detoxification of heavy metal Cr in coal gasification slag [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 11-19. |
[5] | Wei Wang, Romain Lemaire, Ammar Bensakhria, Denis Luart. Thermogravimetric analysis and kinetic modeling of the co-pyrolysis of a bituminous coal and poplar wood [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 53-68. |
[6] | Shuangtai Liu, Lei He, Qiuxiang Yao, Xi Li, Linyang Wang, Jing Wang, Ming Sun, Xiaoxun Ma. Separation and analysis of six fractions in low temperature coal tar by column chromatography [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 256-265. |
[7] | Jiajia Chen, Xinyu Lu, Dandan Wang, Pengcheng Xiu, Xiaoli Gu. Effective depolymerization of alkali lignin using an attapulgite-Ce0.75Zr0.25O2(ATP-CZO)-supported cobalt catalyst in ethanol/isopropanol media [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 50-62. |
[8] | Jian Wang, Yuanhui Shen, Donghui Zhang, Zhongli Tang, Wenbin Li. Integrated vacuum pressure swing adsorption and Rectisol process for CO2 capture from underground coal gasification syngas [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 265-279. |
[9] | Shujun Peng, Song Lei, Sisi Wen, Jian Xue, Haihui Wang. A Ruddlesden–Popper oxide as a carbon dioxide tolerant cathode for solid oxide fuel cells that operate at intermediate temperatures [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 25-32. |
[10] | Jiajun Wang, Wenbin Yang, Jiangtao Geng, Zhigang Shao, Wei Song. Experimental investigation on degradation mechanism of membrane electrode assembly at different humidity under automotive protocol [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 70-79. |
[11] | Tinghao Jia, Yunbo Yu, Qing Liu, Yao Yang, Ji-Jun Zou, Xiangwen Zhang, Lun Pan. Theoretical and experimental study on the inhibition of jet fuel oxidation by diarylamine [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 225-232. |
[12] | Tutuk Djoko Kusworo, Monica Yulfarida, Andri Cahyo Kumoro, Dani Puji Utomo. Purification of bioethanol fermentation broth using hydrophilic PVA crosslinked PVDF-GO/TiO2 membrane [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 123-136. |
[13] | Mustapha Omenesa Idris, Claudia Guerrero-Barajas, Hyun-Chul Kim, Asim Ali Yaqoob, Mohamad Nasir Mohamad Ibrahim. Scalability of biomass-derived graphene derivative materials as viable anode electrode for a commercialized microbial fuel cell: A systematic review [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 277-292. |
[14] | Jinchang Liu, Chenyang Shen, Lujie Huang, Tinghao Fang, Yaping Li, Dingcheng Liang, Qiang Xie. Preparation of pitch precursor with excellent spinnability for general-purpose carbon fibre using coal tar pitch as raw material [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 22-28. |
[15] | Wenjuan Yan, Puhua Sun, Chen Luo, Xingfan Xia, Zhifei Liu, Yuming Zhao, Shuxia Zhang, Liang Sun, Feng Du. PtCo-based nanocatalyst for oxygen reduction reaction: Recent highlights on synthesis strategy and catalytic mechanism [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 101-123. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||