[1] Z.K. Nagy, R.D. Braatz, Advances and new directions in crystallization control, Annu. Rev. Chem. Biomol. 3(5) (2012) 55-75. [2] Junbo Gong, Yan Wang, Du Shicao, et al., Industrial crystallization in China, Chem. Eng. Technol. 39(5) (2016) 807-814. [3] Z.K. Nagy, G. Fevotte, H. Kramer, Recent advances in the monitoring, modelling and control of crystallization systems, Chem. Eng. Res. Des. 91(10) (2013) 1903-1922. [4] Z. Xu, H. Zhao, C. Zheng, Accelerating population balance-Monte Carlo simulation for coagulation dynamics from the Markov jump model, stochastic algorithm and GPU parallel computing, J. Comput. Phys. 281(2015) 844-863. [5] G. Kotalczyk, J. Devi, F.E. Kruis, A time-driven constant-number Monte Carlo method for the GPU-simulation of particle breakage based on weighted simulation particles, Powder Technol. 317(2017) 417-429. [6] H.M. Hulburt, S. Katz, Some problems in particle technology-A statistical mechanical formulation, Chem. Eng. Sci. 19(8) (1964) 555-574. [7] D. Li, Z. Li, Z. Gao, Quadrature-based moment methods for the population balance equation:An algorithm review, Chinese J. Chem. Eng. 27(2019) 483-500. [8] F. Gelbard, J.H. Seinfeld, Numerical solution of the dynamic equation for particulate systems, J. Comput. Phys. 28(3) (1978) 357-375. [9] S. Kumar, D. Ramkrishna, On the solution of population balance equations by discretization-III. Nucleation, growth and aggregation of particles, Chem. Eng. Sci. 52(24) (1997) 4659-4679. [10] J. Kumar, M. Peglow, G. Warnecke, et al., An efficient numerical technique for solving population balance equation involving aggregation, breakage, growth and nucleation, Powder Technol. 182(2008) 81-104. [11] M.J. Hounslow, R.L. Ryall, V.R. Marshall, A discretized population balance for nucleation, growth, and aggregation, AIChE J. 34(11) (1988) 1821-1832. [12] J.D. Lister, D.J. Smit, M.J. Hounslow, Adjustable discretized population balance to growth and aggregation, AIChE J. 41(3) (1995) 591-603. [13] M. Kostoglou, Extended cell average technique for the solution of coagulation equation, J. Colloid Interf. Sci. 306(1) (2007) 72-81. [14] M. Kostoglou, A.J. Karabelas, On sectional techniques for the solution of the breakage equation, Comput. Chem. Eng. 33(2009) 112-121. [15] P. Mostafaei, M. Rajabihamane, A. Salehpour, A modified cell average technique for the solution of population balance equation, J. Aerosol Sci. 87(2015) 111-125. [16] P. Mostafaei, M. Rajabi-Hamane, Numerical solution of the population balance equation using an efficiently modified cell average technique, Comput. Chem. Eng. 96(2017) 33-41. [17] Y.P. Gokhale, R. Kumar, J. Kumar, et al., Disintegration process of surface stabilized sol-gel TiO2 nano particles by population balances, Chem. Eng. Sci. 64(2009) 5302-5307. [18] M.O. Besenhard, A. Chaudhury, T. Vetter, et al., Evaluation of parameter estimation methods for crystallization processes modeled via population balance equations, Chem. Eng. Res. Des. 94(2015) 275-289. [19] J. Gaillard, S. Lalleman, M. Bertrand, et al., Comparison of the method of classes and the quadrature of moment for the modelling of neodymium oxalate precipitation, Procedia Chem. 21(2016) 334-340. [20] A. Griewank, Evaluating derivatives, Society for Industrial & Applied Mathematics, Philadelphia Pa, 2000. [21] V. Kariwala, Y. Cao, Z.K. Nagy, Automatic differentiation-based quadrature method of moments for solving population balance equations, AIChE J. 58(3) (2012) 842-854. [22] Y. Cao, V. Kariwala, Z.K. Nagy, Parameter estimation for crystallization processes using Taylor method, the 8th International Federation of Automatic Control Symposium, Singapore, July 10-13(2012) 880-885. [23] W. Chen, F. Zhang, T. Liu, et al., Parameter estimation for batch crystallization processes using automatic differentiation, the 37th Chinese control conference Wuhan, China, July, 25-27(2018) 1809-1814. [24] D. Ramkrishna, Population Balances:Theory and Applications to Particulate Systems in Engineering, Academic Press, San Diego, 2000. [25] Z.K. Nagy, E. Aamir, Systematic design of supersaturation controlled crystallization processes for shaping the crystal size distribution using an analytical estimator, Chem. Eng. Sci. 84(2012) 656-670. [26] H.M. Omar, S. Rohani, Crystal population balance formulation and solution methods:A review, Cryst. Growth Des. 17(2017) 4028-4041. [27] À. Jorba, M. Zou, A software package for the numerical integration of odes by means of high-order Taylor methods, Exp. Math. 14(1) (2005) 99-117. [28] R. Barrio, Performance of the Taylor series method for ODEs/DAEs, Appl. Math. Comput. 163(2) (2005) 525-545. [29] J.F. Pérez Calvo, S.S. Kadam, H.J.M. Kramer, Determination of kinetics in batch cooling crystallization processes-A sequential parameter estimation approach, AIChE J. 62(2016) 3992-4012. [30] R.A. Waltz, J.L. Morales, J. Nocedal, et al., An interior algorithm for nonlinear optimization that combines line search and trust region steps, Math. Program. 107(3) (2006) 391-408. [31] C.Y. Ma, X.Z. Wang, Closed-loop control of crystal shape in cooling crystallization of L-glutamic acid, J. Process Contr. 22(2012) 72-81. [32] L.J. Shaikh, A.H. Bari, V.V. Ranade, et al., Generic framework for crystallization processes using the population balance model and its applicability, Ind. Eng. Chem. Res. 54(2015) 10539-10548. [33] R.D. Guan, T. Liu, F.K. Zhang, et al., Optimal control of L-glutamic acid crystal size distribution based on population balance model, Chin. J. Chem. Eng. 68(3) (2017) 956-963. [34] T.F. Coleman, Y. Li, An interior trust region approach for nonlinear minimization subject to bounds, SIAM J. Optimiz. 6(2) (1996) 418-445. [35] Hang Qian, Counting the floating point operations (FLOPS), MATLAB Central File Exchange, No.50608, 2015. [36] R.M. Ziff, E.D. McGrady, The kinetics of cluster fragmentation and depolymerization, J. Phys. A Math. Gen. 18(1985) 3027-3037. [37] W.T. Scott, Analytic studies of cloud droplet coalescence, J. Atmos. Sci. 25(1968) 54-65. [38] D.P. Patil, J.R.G. Andrews, An analytical solution to continuous population balance model describing floc coalescence and breakage-A special case, Chem. Eng. Sci. 53(1998) 599-601. [39] F.K. Zhang, T. Liu, X.Z. Wang, et al., Comparative study on ATR-FTIR calibration models for monitoring solution concentration in cooling crystallization, J. Cryst. Growth 459(2017) 50-55. [40] Y. Huo, T. Liu, H. Liu, et al., In-situ crystal morphology identification using imaging analysis with application to the L-glutamic acid crystallization, Chem. Eng. Sci. 148(2016) 126-139. |