[1] R.B. Handfield, E.L. Nichols Jr., Introduction to Supply Chain Management, Prenticehall, NJ, US, 1999. [2] H. Sahebi, S. Nickel, J. Ashayeri, Strategic and tactical mathematical programming models within the crude oil supply chain context-A review, Comput. Chem. Eng. 68(2014) 56-77. [3] C. Lima, S. Relvas, A. Barbosa-Póvoa, Stochastic programming approach for the optimal tactical planning of the downstream oil supply chain, Comput. Chem. Eng. 108(2018) 314-336. [4] Y. Kim, C. Yun, S. Bin Park, S. Park, L.T. Fan, An integrated model of supply network and production planning for multiple fuel products of multi-site refineries, Comput. Chem. Eng. 32(2008) 2529-2535. [5] F.E. Andersen, M.S. Díaz, I.E. Grossmann, Multiscale strategic planning model for the design of integrated ethanol and gasoline supply chain, AIChE J. 59(2013) 4655-4672. [6] L.J. Fernandes, S. Relvas, A.P. Barbosa-Póvoa, Collaborative design and tactical planning of downstream petroleum supply chains, Ind. Eng. Chem. Res. 53(2014) 17155-17181. [7] A. Ben-Tal, A. Nemirovski, Robust solutions of uncertain linear programs, Oper. Res. Lett. 25(1999) 1-13. [8] C. LUO, G. RONG, A strategy for the integration of production planning and scheduling in refineries under uncertainty, Chin. J. Chem. Eng. 17(2009) 113-127. [9] H.I. Gassmann, A. Prékopa, On stages and consistency checks in stochastic programming, Oper. Res. Lett. 33(2005) 171-175. [10] F. You, I.E. Grossmann, Design of responsive supply chains under demand uncertainty, Comput. Chem. Eng. 32(2008) 3090-3111. [11] F. Herrera, J.L. Verdegay, Three models of fuzzy integer linear programming, Eur. J. Oper. Res. 83(1995) 581-593. [12] M.L. Liu, N.V. Sahinidis, Process planning in a fuzzy environment, Eur. J. Oper. Res. 100(1997) 142-169. [13] J.R. Birge, F. Louveaux, Introduction to Stochastic Programming (2011) https://doi.org/10.1007/978-1-4614-0237-4. [14] A. Pongsakdi, P. Rangsunvigit, Financial risk management in the planning of refinery operations, Int. J. Prod. Econ. 103(2006) 64-86. [15] C.S. Khor, A. Elkamel, K. Ponnambalam, P.L. Douglas, Two-stage stochastic programming with fixed recourse via scenario planning with economic and operational risk management for petroleum refinery planning under uncertainty, Chem. Eng. Process. Process Intensif. 47(2008) 1744-1764. [16] A. Azadeh, F. Shafiee, R. Yazdanparast, J. Heydari, A.M. Fathabad, Evolutionary multiobjective optimization of environmental indicators of integrated crude oil supply chain under uncertainty, J. Clean. Prod. 152(2017) 295-311. [17] C. Lima, S. Relvas, A.P.F.D. Barbosa-póvoa, Downstream oil supply chain management:A critical review and future directions, Comput. Chem. Eng. 92(2016) 78-92. [18] W.B.E. Al-Othman, H.M.S. Lababidi, I.M. Alatiqi, K. Al-Shayji, Supply chain optimization of petroleum organization under uncertainty in market demands and prices, Eur. J. Oper. Res. 189(2008) 822-840. [19] A. Leiras, G. Ribas, S. Hamacher, A. Elkamel, Tactical and operational planning of multirefinery networks under uncertainty:An iterative integration approach, Ind. Eng. Chem. Res. 52(2013) 8507-8517. [20] Y. Zhao, Y. Luo, X. Yuan, An optimization model for tactical decision-making level and uncertainty risk management in petroleum supply chain, Huagong Xuebao/CIESC J. 68(2017) 746-758(in Chinese). [21] E.M.L. Beale, On minimizing a convex function subject to linear inequalities, J. R. Stat. Soc. Ser. B 17(1955) 173-184. [22] G.B. Danzig, Linear programming under uncertainty, Manag. Sci. 1(1955) 197-206. [23] B.H. Gebreslassie, Y. Yao, F. You, Design under uncertainty of hydrocarbon biorefinery supply chains:Multiobjective stochastic programming models, decomposition algorithm, and a comparison between CVaR and downside risk, AIChE J. 58(2012) 2155-2179. [24] B. Wang, Y. Sun, Q. Chen, Z. Wang, Determinants analysis of carbon dioxide emissions in passenger and freight transportation sectors in China, Struct. Chang. Econ. Dyn. 47(2018) 127-132. [25] J. Jiang, Q. Ma, Estimation and analysis of carbon dioxide emissions in refineries, Mod. Chem. Ind. (2013) 2-6. [26] N.M. Nasab, M.R. Admin-Naseri, Designing an integrated model for a multi-period, multi-echelon and multi-product petroleum supply chain, Energy. 114(2016) 708-733. [27] A. Yousefi-Babadi, R. Tavakkoli-Moghaddam, A. Bozorgi-Amiri, Designing a reliable multi-objective queuing model of a petrochemical supply chain network under uncertainty:A case study, Comput. Chem. Eng. 100(2017) 177-197. [28] A. Kostin, D.H. Macowski, J.M. Pietrobelli, et al., Optimization-based approach for maximizing profitability of bioethanol supply chain in Brazil, Comput. Chem. Eng. 115(2018) 121-132. [29] F.D. Sepulveda, L.A. Cisternas, E.D. Galvez, The use of global sensitivity analysis for improving processes:Applications to mineral processing, Comput. Chem. Eng. 66(2014) 221-232. [30] F.A. Lucay, E.D. Galvez, M. Salez-Cruz, et al., Improving milling operation using uncertainty and global sensitivity analyses, Miner. Eng. 131(2019) 249-261. [31] I.M. Sobol, Sensitivity estimates for nonlinear mathematical models, Mathematical Modeling and Computational Experiment 4(1993) 407-414. [32] M.J.W. Jansen, Analysis of variance designs for model output, Comput. Phys. Commun. 117(1999) 35-43. [33] L. Lilburne, S. Tarantola, Sensitivity analysis of spatial models, Int. J. Geogr. Inf. Sci. 23(2009) 151-168. |