1 Linga, P., Al-Saifi, N., Englezos, P., “Comparison of the Luus-Jaakola optimization and Gauss-Newton methods for parameter estimation in ordinary differential equations models”, Ind. Eng. Chem. Res., 45, 4716-4725 (2006).
2 Katare, S., Bhan, A., “A hybrid genetic algorithm for efficient parameter estimation of large kinetic models”, Comput. Chem. Eng., 28, 2569-2581 (2004).
3 Esposito, W.R., Floudas, C.A., “Global optimization for the parameter estimation of differential algebraic systems”, Ind. Eng. Chem. Res., 40, 2876-2885 (2001).
4 Prata, D.M., Lima, E.L., Pinto, J.C., “Simultaneous robust data reconciliation and gross error detection through particle swarm optimization for an industrial polypropylene reactor”, Chem. Eng. Sci., 65, 4943-4954 (2010).
5 Park, T.Y., Froment, G.F., “A Hybrid genetic algorithm for the estimation of parameters in detailed kinetic models”, Comput. Chem. Eng., 22, 103-110 (1998).
6 Prata, D.M., Lima, E.L., Pinto, J.C., “Nonlinear dynamic data reconciliation and parameter estimation through particle swarm optimization: application for an industrial polypropylene reactor”, Chem. Eng. Sci., 64, 3953-3967 (2009).
7 Storn, R., Price, K.V., “Differential evolution: a simple and efficient heuristic for global optimization over continuous spaces”, J. Global Optimization, 11, 341-359 (1997).
8 Hsiao, C.T., Chahine, G., Gumerov, N., “Application of a hybrid genetic/Powell algorithm and a boundary element method to electrical impedance tomography”, Journal of Computational Physics, 173, 433-454 (2001).
9 Babu, B.V., Angira, R., “Modified differential evolution for optimization of non-linear chemical processes”, Comput. Chem. Eng., 30, 989-1002 (2006).
10 Wang, F.S., Su, T.L., Jang, H.J., “Hybrid differential evolution for problems of kinetic parameter estimation and dynamic optimization of an ethanol fermentation process”, Ind. Eng. Chem. Res., 40, 2876-2885 (2001).
11 Yun, Y., Gen, M., “Various hybrid methods based on genetic algorithm with fuzzy logic controller”, Journal of Intelligent Manufacturing, 14, 401-419 (2003).
12 Angira, R., Babu, B.V., “Optimization of process synthesis and design problems: A modified differential evolution approach”, Chem. Eng. Sci., 61, 4707-4721 (2006).
13 Englezos, P., Kalogerakis, N., Applied Parameter Estimation for Chemical Engineers, Springer, New York (2001).
14 Kim, I.W., Liebmann, M.J., Edgar, T.F., “Robust error-in-variables estimation using nonlinear programming techniques”, AIChE J., 36, 985-993 (1990).
15 Faber, R., Garcia, H.A., Li, P., Wonzy, G., “Sequential parameter estimation for large-scale systems with multiple data sets 1. Computational framework”, Ind. Eng. Chem. Res., 42, 5850-5860 (2003).
16 Hong, W.R., Wang, S.Q., Li, P., Wonzy, G., Biegler, L.T., “A quasi-sequential approach to large-scale dynamic optimization problems”, AIChE J., 52, 255-268 (2006).
17 Pham, Q.T., “Dynamic optimization of chemical engineering processes by an evolutionary method”, Comput. Chem. Eng., 22, 1089-1097 (1997).
18 Ranganath, M., Renganathan, S., Gokulnath, C., “Identification of bioprocesses using genetic algorithm”, Bioprocess Engineering, 21, 123-127 (1999). |