[1] W. Wei, C.A. Bennett, R. Tanaka, G. Hou, M.T. Klein, Computer aided kinetic modeling with KMT and KME, Fuel Process. Technol. 89(4) (2008) 350–363. [2] R.J. Quann, S.B. Jaffe, Structure-oriented lumping: Describing the chemistry of complex hydrocarbon mixtures, Ind. Eng. Chem. Res. 31(11) (1992) 2483–2497. [3] R.J. Quann, S.B. Jaffe, Building useful models of complex reaction systems in petroleum refining, Chem. Eng. Sci. 51(10) (1996) 1615–1635. [4] Peng, Molecular Modelling of Petroleum Processes, University of Manchester Manchester, 1999. [5] S. Feng, C. Cui, K.Y. Li, L.Z. Zhang, Q. Shi, S.Q. Zhao, C.M. Xu, Molecular composition modelling of petroleum fractions based on a hybrid structural unit and bond-electron matrix (SU-BEM) framework, Chem. Eng. Sci. 201(2019) 145–156. [6] G. Christensen, M.R. Apelian, K.J. Hickey, S.B. Jaffe, Future directions in modeling the FCC process: An emphasis on product quality, Chem. Eng. Sci. 54(13–14) (1999) 2753–2764. [7] N.V. Dewachtere, F. Santaella, G.F. Froment, Application of a single-event kinetic model in the simulation of an industrial riser reactor for the catalytic cracking of vacuum gas oil, Chem. Eng. Sci. 54(15–16) (1999) 3653–3660. [8] P. Agarwal, M. Sahasrabudhe, S. Khandalkar, C. Saravanan, M.T. Klein, Molecular-level kinetic modeling of a real vacuum gas oil hydroprocessing refinery system, Energy Fuels 33(10) (2019) 10143–10158. [9] L. Pereira de Oliveira, J.J. Verstraete, M. Kolb, A Monte Carlo modeling methodology for the simulation of hydrotreating processes, Chem. Eng. J. 207–208(2012) 94–102. [10] A. Alvarez-Majmutov, J.W. Chen, Stochastic modeling and simulation approach for industrial fixed-bed hydrocrackers, Ind. Eng. Chem. Res. 56(24) (2017) 6926–6938. [11] X. Zhou, Z. Hou, J.G. Wang, W. Fang, A.Z. Ma, J.B. Guo, M.T. Klein, Molecularlevel kinetic model for C12 continuous catalytic reforming, Energy Fuels 32(6) (2018) 7078–7085. [12] T. Billa, S.R. Horton, M. Sahasrabudhe, C. Saravanan, Z. Hou, P. Agarwal, J. Lucio-Vega, M.T. Klein, Enhancing the value of detailed kinetic models through the development of interrogative software applications, Comput. Chem. Eng. 106(2017) 512–528. [13] K.M. Van Geem, M.F. Reyniers, G.B. Marin, J. Song, W.H. Green, D.M. Matheu, Automatic reaction network generation using RMG for steam cracking of nhexane, AIChE J. 52(2) (2006) 718–730. [14] Y. Ren, G.S. Guo, Z.W. Liao, Y. Yang, J.Y. Sun, B.B. Jiang, J.D. Wang, Y.R. Yang, Kinetic modeling with automatic reaction network generator, an application to naphtha steam cracking, Energy 207(2020) 118204. [15] L.D. Tian, B.X. Shen, J.C. Liu, A delayed coking model built using the structureoriented lumping method, Energy Fuels 26(3) (2012) 1715–1724. [16] L.D. Tian, B.X. Shen, J.C. Liu, Building and application of delayed coking structure-oriented lumping model, Ind. Eng. Chem. Res. 51(10) (2012) 3923–3931. [17] S.R. Horton, L.Z. Zhang, Z. Hou, C.A. Bennett, M.T. Klein, S.Q. Zhao, Molecularlevel kinetic modeling of resid pyrolysis, Ind. Eng. Chem. Res. 54(16) (2015) 4226–4235. [18] L.Z. Zhang, Z. Hou, S.R. Horton, M.T. Klein, Q. Shi, S.Q. Zhao, C.M. Xu, Molecular representation of petroleum vacuum resid, Energy Fuels 28(3) (2014) 1736–1749. [19] R.A. Aguilar, J. Ancheyta, Modeling coil and soaker reactors for visbreaking, Ind. Eng. Chem. Res. 55(4) (2016) 912–924. [20] A. Guerra, R. Symonds, S. Bryson, C. Kirney, B. Di Bacco, A. Macchi, R. Hughes, Five-lump mild thermal cracking reaction model of crude oils and bitumen with VLE calculations, Ind. Eng. Chem. Res. 58(36) (2019) 16417–16430. [21] Z.Y. Chen, S. Feng, L.Z. Zhang, Q. Shi, Z.M. Xu, S.Q. Zhao, C.M. Xu, Molecularlevel kinetic modelling of fluid catalytic cracking slurry oil hydrotreating, Chem. Eng. Sci. 195(2019) 619–630. [22] Z.Y. Chen, S. Feng, L.Z. Zhang, G. Wang, Q. Shi, Z.M. Xu, S.Q. Zhao, C.M. Xu, Molecular-level kinetic modeling of heavy oil fluid catalytic cracking process based on hybrid structural unit and bond-electron matrix, AIChE J. 67(2021) e17027. [23] D. Guan, Z.Y. Chen, X. Chen, Y. Zhang, Q.Y. Qi, Q. Shi, S.Q. Zhao, C.M. Xu, L.Z. Zhang, Molecular-level heavy petroleum hydrotreating modeling and comparison with high-resolution mass spectrometry, Fuel 297(2021) 120792. [24] L.Z. Zhang, Z.M. Xu, Q. Shi, X.W. Sun, N. Zhang, Y.H. Zhang, K.H. Chung, C.M. Xu, S.Q. Zhao, Molecular characterization of polar heteroatom species in Venezuela Orinoco petroleum vacuum residue and its supercritical fluid extraction subfractions, Energy Fuels 26(9) (2012) 5795–5803. [25] T.D. Walter, M.T. Klein, A mechanistic model of the pyrolysis chemistry of 4-(1-naphthylmethyl)bibenzyl as a probe of hydrocarbon structure/reactivity relationships, Ind. Eng. Chem. Res. 34(12) (1995) 4244–4253. [26] P.E. Savage, Mechanisms and kinetics models for hydrocarbon pyrolysis, J. Anal. Appl. Pyrolysis 54(1–2) (2000) 109–126. [27] A. Nigam, M.T. Klein, A mechanism-oriented lumping strategy for heavy hydrocarbon pyrolysis: Imposition of quantitative structure-reactivity relationships for pure components, Ind. Eng. Chem. Res. 32(7) (1993) 1297–1303. [28] B. Shukla, A. Susa, A. Miyoshi, M. Koshi, In situ direct sampling mass spectrometric study on formation of polycyclic aromatic hydrocarbons in toluene pyrolysis, J. Phys. Chem. A 111(34) (2007) 8308–8324. [29] R.E. Humburg, P.E. Savage, Pyrolysis of polycyclic perhydroarenes. 1. 9-ndodecylperhydroanthracene, Ind. Eng. Chem. Res. 35(1996) 2096–2102. [30] A. de Klerk, Thermal conversion modeling of visbreaking at temperatures below 400℃, Energy Fuels 34(12) (2020) 15285–15298. [31] T.I. Mizan, P.E. Savage, B. Perry, Pyrolysis of polycyclic perhydroarenes. 2.1-nundecylperhydronaphthalene, Energy Fuels 11(1) (1997) 107–115. [32] C.M. Smith, P.E. Savage, Reactions of polycyclic alkylaromatics. 1. Pathways, kinetics, and mechanisms for 1-dodecylpyrene pyrolysis, Ind. Eng. Chem. Res. 30(1991) 331–339. [33] M.G. Evans, M. Polanyi, Some applications of the transition state method to the calculation of reaction velocities, especially in solution, Trans. Faraday Soc. 31(1935) 875. [34] I. Mochida, Linear free energy relationships in heterogeneous catalysis II. Dealkylation and isomerization reactions on various solid acid catalysts, J. Catal. 7(4) (1967) 393–396. [35] C.M. Smith, P.E. Savage, Reactions of polycyclic alkylaromatics: Structure and reactivity, AIChE J. 37(11) (1991) 1613–1624. [36] J.W. Chen, N. Wang, F. Mederos, J. Ancheyta, Vapor-liquid equilibrium study in trickle-bed reactors, Ind. Eng. Chem. Res. 48(3) (2009) 1096–1106. [37] J.W. Chen, V. Mulgundmath, N. Wang, Accounting for Vapor-Liquid equilibrium in the modeling and simulation of a commercial hydrotreating reactor, Ind. Eng. Chem. Res. 50(3) (2011) 1571–1579. |