[1] Streitberger H.J., Goldschmidt A., BASF handbook basics of coating technology, Eur. Coat., Vincentz Network, Hannover, 2018. [2] J. Bentley, G.P.A. Turner, Introduction to Paint Chemistry and Principles of Paint Technology, 4th ed., CRC Press, London, (1997). [3] B. Müller, U. Poth, Coatings Formulation, Vincentz Network, Hanover, 2011. [4] D.T. Wu, Computer aided application of chemical engineering principles in the development of coatings, Comput. Chem. Eng. 16 (1992) S31-S42. [5] E. Conte, Innovation in Integrated Chemical Product-Process DesignDevelopment through a Model-Based Systems Approach Ph.D. Thesis, Technical University of Denmark (DTU), Denmark, 2010. [6] E.B. Venceslau, P.A. Pessoa Filho, G.A.C. Le Roux, Application of computer aided mixture design in paints and coatings, Comput. Aided Chem. Eng. 30 (2012) 587. [7] S. Jhamb, M. Enekvist, X. Liang, X. Zhang, K. Dam-Johansen, G.M. Kontogeorgis, A review of computer-aided design of paints and coatings, Curr. Opin. Chem. Eng. 27 (2020) 107-120. [8] C.M. Hansen, Hansen Solubility Parameters: A User’s Handbook, 2nd ed., CRC Press, London, (2007). [9] K.M.A. Shareef, M. Yaseen, M.M. Ali, P.J. Reddy, Suspension interaction of pigments in solvents: Characterization of pigment surfaces in terms of threedimensional solubility parameters of solvents, J. Coat. Tech. 58 (733) (1986) 35-44. [10] J. Frutiger, C. Marcarie, J. Abildskov, G. Sin, A comprehensive methodology for development, parameter estimation, and uncertainty analysis of group contribution based property models-An application to the heat of combustion, J. Chem. Eng. Data 61 (1) (2016) 602-613. [11] R. Gani, Group contribution-based property estimation methods: advances and perspectives, Curr. Opin. Chem. Eng. 23 (2019) 184-196. [12] J. Hildebrand, R.L. Scott, Regular Solutions, Prentice-Hall, Englewood Cliffs, New Jersey, 1962. [13] R. Gani, Computer-aided methods and tools for chemical product design, Chem. Eng. Res. Des. 82 (11) (2004) 1494. [14] E. Conte, R. Gani, K.M. Ng, Design of formulated products: a systematic methodology, AIChE J. 57 (9) (2011) 2431-2449. [15] E. Stefanis, L. Constantinou, C. Panayiotou, A group-contribution method for predicting pure component properties of biochemical and safety interest, Ind. Eng. Chem. Res. 43 (19) (2004) 6253-6261. [16] A.S. Hukkerikar, B. Sarup, A. Ten Kate, J. Abildskov, G. Sin, R. Gani, Groupcontribution+ (GC+) based estimation of properties of pure components: Improved property estimation and uncertainty analysis, Fluid Phase Equilibr. 321 (2012) 25-43. [17] D.W. van Krevelen, P.J. Hoftyzer, Properties of Polymers: Their Estimation and Correlations with Chemical Structure, Elsevier, Amsterdam, (1976). [18] K.L. Hoy, The Hoy Tables of Solubility Parameters, Union Carbide Corporation, West Virginia, (1985). [19] J. Marrero, R. Gani, Group-contribution based estimation of pure component properties, Fluid Phase Equilibr. 183 (2001) 183-208. [20] E. Stefanis, C. Panayiotou, Prediction of Hansen solubility parameters with a new group-contribution method, Int. J. Thermophys. 29 (2) (2008) 568-585. [21] The ProPred software, Department of Chemical Engineering, DTU, Lyngby, Denmark, https://www.kt.dtu.dk/english/research/kt-consortium/software, last accessed 29-01-2021. [22] L. Constantinou, R. Gani, New group contribution method for estimating properties of pure compounds, AIChE J. 40 (10) (1994) 1697-1710. [23] M.L. Mavrovouniotis, Estimation of properties from conjugate forms of molecular structures: the ABC approach, Ind. Eng. Chem. Res 29 (9) (1990) 1943-1953. [24] C.M. Hansen, A. Beerbower, Solubility parameters, Kirk-Othmer Encycl. Chem. Technol. 2 (2) (1971) 889-910. [25] A.F. Barton, CRC Handbook of Solubility Parameters and Other Cohesion Parameters, 2nd ed., CRC Press, Boca Raton, (1991). [26] C. M. Hansen, The Three Dimensional Solubility Parameter. Danish Technical Press, Copenhagen, (1967). [27] K.E. Hines, T.R. Middendorf, R.W. Aldrich, Determination of parameter identifiability in nonlinear biophysical models: A Bayesian approach, J. Gen. Physiol. 143 (3) (2014) 401-416. [28] J.J. Moré, The Levenberg-Marquardt algorithm: Implementation and theory, in: Numerical analysis, Springer, Berlin, Heidelberg, 1978, pp. 105-116. [29] M.I. Lourakis, A brief description of the Levenberg-Marquardt algorithm implemented by Levmar, Found. Res. Technol. 4(1), 1-6. [30] M. Baltes, R. Schneider, C. Sturm, M. Reuss, Optimal experimental design for parameter estimation in unstructured growth models, Biotechnol. Prog. 10 (5) (1994) 480-488. [31] J. Abildskov, J.P. O’Connell, Predicting the solubilities of complex chemicals I. Solutes in different solvents, Ind. Eng. Chem. Res. 42 (22) (2003) 5622-5634. [32] Y. Takehara, T. Asada, T. Tani, A. Yamamoto, Y. Tawara, M. Suezawa, Some valuation on pigment dispersion by solubility parameter determination of dispersion parameter, J. Jpn. Soc. Color Mater. 47 (9) (1974) 411-421. [33] K. Adamska, R. Bellinghausen, A. Voelkel, New procedure for the determination of Hansen solubility parameters by means of inverse gas chromatography, J. Chromatogr. A 1195 (1-2) (2008) 146-149. [34] W. Herbst, K. Hunger, Industrial Organic Pigments: Production, Properties, Applications, John Wiley & Sons, Weinheim, (2006). [35] R.M. Christie, P.M. Standring, Colour and constitution relationships in organic pigments. Part 2 -Disazoacetoacetanilides, Dyes Pigments 11 (1989) 109-121. [36] M.J. Barrow, R.M. Christie, A.J. Lough, J.E. Monteith, P.N. Standring, The crystal structure of CI pigment yellow 12, Dyes Pigments 45 (2) (2000) 153-160. [37] M.J. Barrow, R.M. Christie, T.D. Badcock, The crystal and molecular structure of CI pigment 83, a superior performance diarylide yellow pigment, Dyes Pigments 57 (2002) 99-106. |