[1] G.V. Tsarichenko, V.I. Bobrov, M.V. Smarkov, Toxicity of isonicotinic acid, Pharm. Chem. J. 11(1977) 481-483. [2] L.C. Wang, H. Ding, J.H. Zhao, C.Y. Song, J.S. Wang, Solubility of isonicotinic acid in 4-methylpyridine plus water from (287.65 to 361.15) K, J. Chem. Eng. Data 53(2008) 2544-2546. [3] M.H. Abraham, W.E. Acree, On the solubility of nicotinic acid and isonicotinic acid in water and organic solvents, J. Chem. Thermodyn. 61(2013) 74-78. [4] M. Arai, Y.I. Alavi, J. Mendoza, O. Billker, R.E. Sinden, Isonicotinic acid hydrazide:An anti-tuberculosis drug inhibits malarial transmission in the mosquito gut, Exp. Parasitol. 106(2004) 30-36. [5] P.K. Mehta, S.K. Bhatia, R.K. Bhatia, T.C. Bhalla, Thermostable amidase catalyzed production of isonicotinic acid from isonicotinamide, Process Biochem. (Oxford, U. K.) 50(2015) 1400-1404. [6] T.D. Swanson, G.C. Birur, Nasa thermal control technologies for robotic spacecraft, Appl. Therm. Eng. 23(2003) 1055-1065. [7] D.G. Archer, S. Rudtsch, Enthalpy of fusion of indium:A certified reference material for differential scanning calorimetry†, J. Chem. Eng. Data 48(2003) 1157-1163. [8] J.A. Wilson, J.S. Chickos, Vapor pressures and vaporization, sublimation, and fusion enthalpies of some fatty acids, J. Chem. Eng. Data 58(2013) 322-333. [9] J. Troncoso, C.A. Cerdeirina, Y.A. Sanmamed, L. Romani, L.P.N. Rebelo, Thermodynamic properties of imidazolium-based ionic liquids:Densities, heat capacities, and enthalpies of fusion of[bmim] [pf6] and[bmim] [ntf2], J. Chem. Eng. Data 51(2006) 1856-1859. [10] G. Nichols, S. Kweskin, M. Frericks, S. Reiter, G. Wang, J. Orf, B. Carvallo, D. Hillesheim, J. Chickos, Evaluation of the vaporization, fusion, and sublimation enthalpies of the 1-alkanols:The vaporization enthalpy of 1-, 6-, 7-, and 9-heptadecanol, 1-octadecanol, 1-eicosanol, 1-docosanol, 1-hexacosanol, and cholesterol at t=298.15 K by correlation gas chromatography, J. Chem. Eng. Data 51(2006) 475-482. [11] W.E. Acree, Thermodynamic properties of organic compounds. Part 4. First update of enthalpy of fusion and melting point temperature compilation, Thermochim. Acta 219(1993) 97-104. [12] J.S. Chickos, W.E. Acree, Total phase change entropies and enthalpies. An update on fusion enthalpies and their estimation, Thermochim. Acta 495(2009) 5-13. [13] J. Lohmann, R. Job, J. Gmehling, Estimation of enthalpies of fusion, melting temperatures, enthalpies of transition, and transition temperatures of pure compounds from experimental binary solid-liquid equilibrium data of eutectic systems, J. Chem. Eng. Data 42(1997) 1176-1180. [14] R.M. Dannenfelser, S.H. Yalkowsky, Estimation of entropy of melting from molecular structure:A non-group contribution method, Ind. Eng. Chem. Res. 35(1996) 1483-1486. [15] A.S. Hukkerikar, B. Sarup, A. Ten Kate, J. Abildskov, G. Sin, R. Gani, Groupcontribution +(gc+) based estimation of properties of pure components:Improved property estimation and uncertainty analysis, Fluid Phase Equilib. 321(2012) 25-43. [16] E.A. Espinosa-Fuentes, J.R. Castro-Suarez, D. Meza-Payares, L.C. Pacheco-Londono, S.P. Hernández-Rivera, Sublimation enthalpy of homemade peroxide explosives using a theoretically supported non-linear equation, J. Therm. Anal. Calorim. 119(2014) 681-688. [17] M.H. Keshavarz, Approximate prediction of melting point of nitramines, nitrate esters, nitrate salts and nitroaliphatics energetic compounds, J. Hazard. Mater. 138(2006) 448-451. [18] K.M. Klincewicz, R.C. Reid, Estimation of critical properties with group contribution methods, AIChE J. 30(1984) 137-142. [19] L. Constantinou, S.E. Prickett, M.L. Mavrovouniotis, Estimation of properties of acyclic organic-compounds using conjugation operators, Ind. Eng. Chem. Res. 33(1994) 395-402. [20] J. Marrero-Morejon, E. Pardillo-Fontdevila, Estimation of pure compound properties using group-interaction contributions, AIChE J. 45(1999) 615-621. [21] K.G. Joback, R.C. Reid, Estimation of pure-component properties from groupcontributions, Chem. Eng. Commun. 57(1987) 233-243. [22] L. Constantinou, S.E. Prickett, M.L. Mavrovouniotis, Estimation of thermodynamic and physical-properties of acyclic hydrocarbons using the abc approach and conjugation operators, Ind. Eng. Chem. Res. 32(1993) 1734-1746. [23] J. Marrero, R. Gani, Group-contribution based estimation of pure component properties, Fluid Phase Equilib. 183-184(2001) 183-208. [24] L. Constantinou, R. Gani, New group contribution method for estimating properties of pure compounds, AIChE J. 40(1994) 1697-1709. [25] L. Zong, S. Ramanathan, C.C. Chen, Predicting thermophysical properties of monoand diglycerides with the chemical constituent fragment approach, Ind. Eng. Chem. Res. 49(2010) 5479-5484. [26] C.K. Kim, K.A. Lee, K.H. Hyun, H.J. Park, I.Y. Kwack, C.K. Kim, H.W. Lee, B.S.U. Lee, Prediction of physicochemical properties of organic molecules using van der waals surface electrostatic potentials, J. Comput. Chem. 25(2004) 2073-2079. [27] J.D. Dyekjaer, S.O. Jonsdottir, Qspr models based on molecular mechanics and quantum chemical calculations. 2. Thermodynamic properties of alkanes, alcohols, polyols, and ethers, Ind. Eng. Chem. Res. 42(2003) 4241-4259. [28] M. Goodarzi, T. Chen, M.P. Freitas, Qspr predictions of heat of fusion of organic compounds using Bayesian regularized artificial neural networks, Chemom. Intell. Lab. Syst. 104(2010) 260-264. [29] S. Puri, J.S. Chickos, W.J. Welsh, Three-dimensional quantitative structure-property relationship (3d-qspr) models for prediction of thermodynamic properties of polychlorinated biphenyls (pcbs):Enthalpies of fusion and their application to estimates of enthalpies of sublimation and aqueous solubilities, J. Chem. Inf. Model. 43(2003) 55-62. [30] M.H. Keshavarz, H.R. Pouretedal, New approach for predicting melting point of carbocyclic nitroaromatic compounds, J. Hazard. Mater. 148(2007) 592-598. [31] J.S. Chickos, W.E. Acree, J.F. Liebman, Estimating solid-liquid phase change enthalpies and entropies, J. Phys. Chem. Ref. Data 28(1999) 1535. [32] J.S. Chickos, C.M. Braton, D.G. Hesse, J.F. Liebman, Estimating entropies and enthalpies of fusion of organic compounds, J. Organomet. Chem. 56(1991) 927-938. [33] J.S. Chickos, W.E. Acree, Total phase change entropies and enthalpies:An update on their estimation and applications to the estimations of amphiphillic fluorocarbonhydrocarbon molecules, Thermochim. Acta 395(2003) 59-113. [34] S. Roy, A.T. Riga, K.S. Alexander, Experimental design aids the development of a differential scanning calorimetry standard test procedure for pharmaceuticals, Thermochim. Acta 392-393(2002) 399-404. [35] W.E. Acree, Thermodynamic properties of organic compounds:Enthalpy of fusion and melting point temperature compilation, Thermochim. Acta 189(1991) 37-56. [36] M.K. Rotich, B.D. Glass, M.E. Brown, Thermal studies on some substituted aminobenzoic acids, J. Therm. Anal. Calorim. 64(2001) 681-688. [37] A. El Moussaoui, A. Chauvet, J. Masse, Solid-state interaction of nordazepam-iii and nicotinic-acid, J. Therm. Anal. 39(1993) 619-632. [38] J.R. Allan, W.C. Geddes, C.S. Hindle, A.E. Orr, Thermal analysis studies on pyridine carboxylic acid complexes of zinc(ii), Thermochim. Acta 153(1989) 249-256. [39] E.S. Domalski, W.H. Evans, E.D. Hearing, Heat capacities and entropies of organic compounds in the condensed phase, J. Phys. Chem. Ref. Data 19(1984) 881-1047. |