[1] B. Wang, H. Li, X. Yuan, Z. Sun, Energy poverty in China:A dynamic analysis based on a hybrid panel data decision model, Energies 10(2017) 1942. [2] M. Chen, X. Yang, Situations and challenges of household energy consumption in Chinese small towns, Energ. Buildings 107(2015) 155-162. [3] M. Kuba, H. Hofbauer, Experimental parametric study on product gas and tar composition in dual fluid bed gasification of woody biomass, Biomass Bioenergy 115(2018) 35-44. [4] W. Zhang, C. Wang, L. Zhang, Y. Xu, Y. Cui, Z. Lu, D.G. Streets, Evaluation of the performance of distributed and centralized biomass technologies in rural China, Renew. Energ. 125(2018) 445-455. [5] G. Duman, M.A. Uddin, J. Yanik, Hydrogen production from algal biomass via steam gasification, Bioresour. Technol. 166(2014) 24-30. [6] S. Link, K. Tran, Q. Bach, P. Yrjas, D. Lindberg, S. Arvelakis, A. Rosin, Catalytic effect of oil shale ash on CO2 gasification of leached wheat straw and reed chars, Energy 152(2018) 906-913. [7] L. Liu, Y. Huang, J. Cao, C. Liu, L. Dong, L. Xu, J. Zha, Experimental study of biomass gasification with oxygen-enriched air in fluidized bed gasifier, Sci. Total Environ. 626(2018) 423-433. [8] E.R. Widjaya, G. Chen, L. Bowtell, C. Hills, Gasification of non-woody biomass:A literature review, Renew. Sust. Energ. Rev. 89(2018) 184-193. [9] S. Sarker, J.J. Lamb, D.R. Hjelme, K.M. Lien, Overview of recent progress towards insitu biogas upgradation techniques, Fuel 226(2018) 686-697. [10] A. Baccioli, M. Antonelli, S. Frigo, U. Desideri, G. Pasini, Small scale bio-LNG plant:Comparison of different biogas upgrading techniques, Appl. Energ. 217(2018) 328-335. [11] X. Dong, B. Jin, Y. Sun, K. Shi, L. Yu, Re-promotedNi-Mn bifunctional catalysts prepared by microwave heating for partial methanation coupling with water gas shift under low H2/CO conditions, Appl. Catal., A 552(2018) 105-116. [12] X. Dong, B. Jin, Y. Sun, L. Yu, Urban gas production from low H2/CO biogas using Repromoted Ni catalysts supported on modified manganese sand, Fuel 220(2018) 60-71. [13] H. Yuan, X. Zhu, J. Han, H. Wang, Q. Ge, Rhenium-promoted selective CO2 methanation on Ni-based catalyst, J. CO2 Util. 26(2018) 8-18. [14] K. Mathisen, K.G. Kirste, J.S.J. Hargreaves, S. Laassiri, K. McAulay, A.R. McFarlane, N.A. Spencer, An in situ XAS study of the cobalt rhenium catalyst for ammonia synthesis, Top. Catal. 61(2018) 225-239. [15] I.T. Ghampson, R. Canales, N. Escalona, A study of the hydrodeoxygenation of anisole over Re-MoO x/TiO2 catalyst, Appl. Catal., A 549(2018) 225-236. [16] L. Yang, L. Pastor-Pérez, S. Gu, A. Sepúlveda-Escribano, T.R. Reina, Highly efficient Ni/CeO2-Al2O3 catalysts for CO2 upgrading via reverse water-gas shift:Effect of selected transition metal promoters, Appl. Catal., B 232(2018) 464-471. [17] S. Liu, Y. Jin, Y. Han, J. Zhao, J. Ren, Highly stable and coking resistant Ce promoted Ni/SiC catalyst towards high temperature CO methanation, Fuel Process. Technol. 177(2018) 266-274. [18] T.Alphazan,A.Bonduelle-Skrzypczak,C.Legens,Z.Boudene,A.Taleb,A.Gay,O.Ersen,C. Copéret, P. Raybaud, Improved promoter effect in NiWS catalysts through a molecular approach and an optimized Ni edge decoration, J. Catal. 340(2016) 60-65. [19] C. Zhi, R. Zhang, B. Wang, Comparative studies about CO methanation over Ni(211) and Zr-modified Ni(211) surfaces:Qualitative insight into the effect of surface structure and composition, Mol. Catal. 438(2017) 1-14. [20] K. Lee, C. Shen, Y. Huang, Enhancement of the partial oxidation of methanol reaction over CuZn catalyst by Mn promoter, Ind. Eng. Chem. Res. 53(2014) 12622-12630. [21] Y. Huang, H. Liu, C. Ling, X. Chen, D. Zhou, S. Wang, Hydrogen activation on the promoted and unpromoted ReS2(001) surfaces under the sulfidation conditions:Afirstprinciples study, J. Phy. Chem. C 119(2015) 17092-17101. [22] P. Nikparsa, A.A. Mirzaei, R. Rauch, Impact of Na promoter on structural properties and catalytic performance of CoNi/Al2O3 nanocatalysts for the CO hydrogenation process:Fischer-Tropsch technology, Catal. Lett. 146(2016) 61-71. [23] M. Yu, Y. Zhu, Y. Lu, G. Tong, K. Zhu, X. Zhou, The promoting role of Ag in Ni-CeO2 catalyzed CH4-CO2 dry reforming reaction, Appl. Catal., B 165(2015) 43-56. [24] D. Lorito, H. Li, A. Travert, F. Maugé, F.C. Meunier, Y. Schuurman, C. Mirodatos, Understanding deactivation processes during bio-syngas methanation:DRIFTS and SSITKA experiments and kinetic modeling over Ni/Al2O3 catalysts, Catal. Today 299(2018) 172-182. [25] Z. Li, K. Zhang, W. Wang, J. Qu, Y. Tian, B. Wang, X. Ma, Kinetics of sulfur-resistant methanation over supported molybdenum-based catalyst, J. Taiwan Inst. Chem. E. 68(2016) 239-245. [26] J. Kopyscinski, T.J. Schildhauer, F. Vogel, S.M.A. Biollaz, A. Wokaun, Applying spatially resolved concentration and temperature measurements in a catalytic plate reactor for the kinetic study of CO methanation, J. Catal. 271(2010) 262-279. [27] Y. Liu, O. Hinrichsen, CFD simulation of hydrodynamics and methanation reactions in a fluidized-bed reactor for the production of synthetic natural gas, Ind. Eng. Chem. Res. 53(2014) 9348-9356. [28] A. Kambolis, T.J. Schildhauer, O. Kröcher, CO methanation for synthetic natural gas production, CHIMIA 69(2015) 608-613. [29] J. Liu, D. Cui, C. Yao, J. Yu, F. Su, G. Xu, Syngas methanation in fluidized bed for an advanced two-stage process of SNG production, Fuel Process. Technol. 141(2016) 130-137. [30] S. Liu, M. Tamura, Z. Shen, Y. Zhang, Y. Nakagawa, K. Tomishige, Hydrogenolysis of glycerol with in-situ produced H2 by aqueous-phase reforming of glycerol using Pt-modifiedIr-ReO x/SiO2 catalyst, Catal. Today 303(2018) 106-116. [31] S. Liu, T. Simonetti, W. Zheng, B. Saha, Selective hydrodeoxygenation of vegetable oils and waste cooking oils to green diesel using a silica-supportedIr-ReOx bimetallic catalyst, ChemSusChem 11(2018) 1446-1454. [32] Z. Liu, J. Wang, H. Ma, L. Cheng, S. Ar, J. Yang, Q. Zhang, A new natural layered clay mineral applicable to photocatalytic hydrogen production and/or degradation of dye pollutant, Environ. Prog. Sustain. Energy 37(2018) 1003-1010. [33] M. Shen, L. Fu, J. Tang, M. Liu, Y. Song, F. Tian, Z. Zhao, Z. Zhang, D.D. Dionysiou, Microwave hydrothermal-assisted preparation of novel spinel-NiFe2O4/natural mineral composites as microwave catalysts for degradation of aquatic organic pollutants, J. Hazard. Mater. 350(2018) 1-9. [34] P.Liu,G.Wei, X.Liang,D.Chen, H.He, T. Chen, Y. Xi, H. Chen, D.Han, J.Zhu,Synergetic effect of Cu and Mn oxides supported on palygorskite for the catalytic oxidation of formaldehyde:Dispersion, microstructure, and catalytic performance, Appl. Clay Sci. 161(2018) 265-273. [35] U. Izquierdo, S. Neuberg, S. Pecov, H. Pennemann, R. Zapf, M. Wichert, V.L. Barrio, J.F. Cambra, G. Kolb, Hydrogen production with a microchannel heat-exchanger reactor by single stage water-gas shift; catalyst development, Chem. Eng. J. 313(2017) 1494-1508. [36] M. Chen, M. Yuan, J. Li, Z. You, Ammonia synthesis over Cs-or Ba-promoted ruthenium catalyst supported on strontium niobate, Appl. Catal., A 554(2018) 1-9. [37] M.N.N. Shahirah, J. Gimbun, A. Ideris, M.R. Khan, C.K. Cheng, Catalytic pyrolysis of glycerol into syngas over ceria-promoted Ni/α-Al2O3 catalyst, Renew. Energ. 107(2017) 223-234. [38] F. Meshkani, M. Rezaei, Mesoporous Ba-promoted chromium free Fe2O3-Al2O3-NiO catalyst with low methanation activity for high temperature water gas shift reaction, Catal. Commun. 58(2015) 26-29. [39] J.Y. Lim, J. McGregor, A.J. Sederman, J.S. Dennis, The role of the Boudouard and water-gas shift reactions in the methanation of CO or CO2 over Ni/γ-Al2O3 catalyst, Chem. Eng. Sci. 152(2016) 754-766. [40] M. Zhou, B. Liu, DFT investigation on the competition of the water-gas shift reaction versus methanation on clean and potassium-modified nickel(111) surfaces, ChemCatChem 7(2015) 3928-3935. [41] Z. Mei, Y. Li, M. Fan, M.D. Argyle, J. Tang, The effects of bimetallic Co-Ru nanoparticles on Co/RuO2/Al2O3 catalysts for the water gas shift and methanation, Int. J. Hydrogen Energ. 39(2014) 14808-14816. [42] K. Zhou, S. Chaemchuen, F. Verpoort, Alternative materials in technologies for biogas upgrading via CO2 capture, Renew. Sust. Energ. Rev. 79(2017) 1414-1441. [43] B. Belaissaoui, E. Favre, Novel dense skin hollow fiber membrane contactor based process for CO2 removal from raw biogas using water as absorbent, Sep. Purif. Technol. 193(2018) 112-126. [44] Q. He, G. Yu, S. Yan, L.F. Dumée, Y. Zhang, V. Strezov, S. Zhao, Renewable CO2 absorbent for carbon capture and biogas upgrading by membrane contactor, Sep. Purif. Technol. 194(2018) 207-215. [45] W. Yang, X. Zhang, J. Su, Y. Wang, Q. Zhao, J. Zhou, Kinetics of n-butanol oxidation over Pt/ZSM-5 catalyst, Fuel Process. Technol. 179(2018) 108-113. [46] F. Vidal Vázquez, J. Kihlman, A. Mylvaganam, P. Simell, M. Koskinen-Soivi, V. Alopaeus, Modeling of nickel-based hydrotalcite catalyst coated on heat exchanger reactors for CO2 methanation, Chem. Eng. J. 349(2018) 694-707. [47] A. Plaza, S. Fail, J.A. Cortés, K. Föttinger, N. Diaz, R. Rauch, H. Hofbauer, Apparent kinetics of the catalyzed water-gas shift reaction in synthetic wood gas, Chem. Eng. J. 301(2016) 222-228. [48] G.A. de Queiroz, C.M.B. de Menezes Barbosa, C.A.M. de Abreu, Mechanism-based kinetics of the water-gas shift reaction at low temperature with a ruthenium catalysts, React. Kinet. Mecha. Catal. 123(2018) 573-583. [49] A.S. Duke, K. Xie, A.J. Brandt, T.D. Maddumapatabandi, S.C. Ammal, A. Heyden, J.R. Monnier, D.A. Chen, Understanding active sites in the water-gas shift reaction for Pt-Re catalysts on titania, ACS Catal. 7(2017) 2597-2606. [50] M. Krämer, K. Stöwe, M. Duisberg, F. Müller, M. Reiser, S. Sticher, W.F. Maier, The impact of dopants on the activity and selectivity of a Ni-based methanation catalyst, Appl. Catal., A 369(2009) 42-52. [51] X. Han, C. Zhao, H. Li, S. Liu, Y. Han, Z. Zhang, J. Ren, Using data mining technology in screening potential additives to Ni/Al2O3 catalysts for methanation, Catal. Sci. Technol. 7(2017) 6042-6049. |