[1] N. Blagden, M.D. Matas, P.T. Gavan, P. York, Crystal engineering of active pharmaceutical ingredients to improve solubility and dissolution rates, Adv. Drug Deliver. Rev. 59 (7) (2007) 617-630. [2] K. Sangwal, Effect of impurities on the metastable zone width of solute-solvent systems, J. Cryst. Growth 311 (16) (2009) 4050-4061. [3] J. Weng, Y. Huang, D. Hao, Y. Ji, Recent advances of pharmaceutical crystallization theories, Chin. J. Chem. Eng. 28 (2020) 948-953. [4] T. Mcglone, N. Briggs, C. Clark, C. Brown, J. Sefcik, A.J. Florence, Oscillatory flow reactors (OFRs) for continuous manufacturing and crystallization, Org. Process Res. Dev. 1210517857 (2015). [5] X. Ni, A. Liao, Effects of mixing, seeding, material of baffles and final temperature on solution crystallization of l-glutamic acid in an oscillatory baffled crystallizer, Chem. Eng. J. 156 (1) (2010) 226-233. [6] K. Ge, Y. Ji, S. Tang, Crystallization kinetics and mechanism of magnesium ammonium phosphate hexahydrate: experimental investigation and chemical potential gradient model analysis and prediction, Ind. Eng. Chem. Res. 59 (30) (2020) 13799-13809. [7] L. Zhou, Z. Wang, M. Zhang, M. Guo, S. Xu, Q. Yin, Determination of metastable zone and induction time of analgin for cooling crystallization, Chin. J. Chem. Eng. 25 (3) (2017) 313-318. [8] L. Chen, L. Song, G. Lan, J. Wang, Solubility and metastable zone width measurement of 3,4-bis(3-nitrofurazan-4-yl)furoxan (DNTF) in ethanol + water, Chin. J. Chem. Eng. 25 (5) (2017) 646-651. [9] J.W. Mullin, Crystallization, fourth ed., Butterworth-Heinemann, Oxford, 536-575(2001). [10] M. Lenka, D. Sarkar, Determination of metastable zone width, induction period and primary nucleation kinetics for cooling crystallization of lasparaginenohydrate, J. Cryst. Growth 408 (Dec.15) (2014) 85-90. [11] K. Vikas, S.S. Chimni, Recent developments on thiourea based anticancer chemotherapeutics, Anti Cancer Agents Med. Chem. 15 (2) (2015) 163-175. [12] Sun Aiwen, S.Y.G.A., Research and application of thiourea in agriculture, Soil Bull. 04 (2003) 377-380. [13] A. Wahid, Thiourea: A molecule with immense biological significance for plants, Int. J. Agric. Biol. 19 (4) (2017) 911-920. [14] I.L. Goncalves, G.O. de Azambuja, D.F. Kawano, V.L. Eifler-Lima, Thioureas as building blocks for the generation of heterocycles and compounds with pharmacological activity: an overview, Mini-Rev. Org. Chem. 15 (1) (2018) 28-35. [15] Z.Z.L.X. Shi Zhichuan, Research progress in synthesis and application of thiourea and its Schiff base derivatives, Chem. Res. Appl. 32 (1) (2020) 9-19. [16] Ji Wei, J.S.L.J., Preparation method and application of thiourea, Chem. Era 18(5) (2004) 10-15. [17] C. Darmali, S. Mansouri, N. Yazdanpanah, W.W. Meng, Mechanisms and control of impurities in continuous crystallization: a review, Ind. Eng. Chem. Res. 58 (4) (2019) 1463-1479. [18] W. Jingkang, The present and future of industrial crystallization, Chem. Eng.-New York 2 (1992) 57-63. [19] Q. Tan, X.H. Ding, Industrial Crystals, Chemical Industry Press, Co., Ltd, Beijing, 1985 (in Chinese). [20] S.A. Begum, M. Hossain, J. Podder, An investigation on the growth and characterization of thiourea single crystal grown from aqueous solutions, J. Bangl. Acad. Ences 33 (1) (2009) 63-70. [21] N.X. Hu, Research on Increasing the Bulk Density of Thiourea, Master Thesis, Sichuan University, 2005. [22] Z. Yang, D. Shao, G. Zhou, Solubility parameter of lenalidomide for predicting the type of solubility profile and application of thermodynamic model, J. Chem. Thermodyn. 132 (2019) 268-275. [23] T. Wang, Y. Zhang, Solubility characteristics of poly(3-hexylthiophene), J. Test. Eval. 38 (4) (2017) 383-389. [24] D.J.W.G. Fairbrother, Non-linear van’t Hoff solubility-temperature plots and their pharmaceutical interpretation, Int. J. Pharmaceut. 18 (1-2) (1984) 25-38. [25] X.Y. Zhang, X. Wang, L. Hao, X. Yang, L. Dang, H. Wei, Solubility and metastable zone width of DL-tartaric acid in aqueous solution, Cryst. Res. Technol. 47 (11) (2012) 1153-1163. [26] Mingxuan Yue, Qian Tan, Ye Yuan, Chunxiang Huang, Yixin Leng, Effects of cooling rate, saturation temperature, and agitation on the metastable zone width of DL-malic acid-water system, Russ. J. Phys. Chem. 226 (5) (2015) 823-835. [27] N. Kubota, A new interpretation of metastable zone widths measured for unseeded solutions, J. Cryst. Growth 310 (3) (2008) 629-634. [28] J. Nyvlt, Kinetics of nucleation in solutions, J. Cryst. Growth 3 (1968) 377-383. [29] K. Sangwal, Novel approach to analyze metastable zone width determined by the polythermal method: physical interpretation of various parameters, Cryst. Growth Des. 9 (2) (2010) 942-950. [30] K. Sangwal, A novel self-consistent Nvlt-like equation for metastable zone width determined by the polythermal method, Cryst. Res. Technol. 44 (4) (2010) 231-247. [31] K. Sangwal, Recent developments in understanding of the metastable zone width of different solutesolvent systems, J. Cryst. Growth 318 (1) (2011) 103-109. [32] D. Kashchiev, A. Borissova, R.B. Hammond, K.J. Roberts, Effect of cooling rate on the critical undercooling for crystallization, J. Cryst. Growth 312 (5) (2010) 698-704. [33] J.W. Mullin, Crystallization (Fourth Edition), Crystallization 536-575 (2001). [34] A. Kuldipkumar, G.S. Kwon, G.G.Z. Zhang, Determining the growth mechanism of tolazamide by induction time measurement, Cryst. Growth Des. 7 (2) (2016) 234-242. [35] S. Teychené, B. Biscans, Nucleation kinetics of polymorphs: induction period and interfacial energy measurements, Cryst. Growth Des. 8 (4) (2008) 1133-1139. [36] P. Ushasree, R. Muralidharan, R. Jayavel, Metastable zonewidth, induction period and interfacial energy of zinc tris(thiourea) sulfate, J. Cryst. Growth 210 (4) (2000) 741-745. |