Chinese Journal of Chemical Engineering ›› 2021, Vol. 29 ›› Issue (3): 153-163.DOI: 10.1016/j.cjche.2020.11.018
Previous Articles Next Articles
Shanshan Wang1,2, Liangliang Huang2, Yumeng Zhang1, Licheng Li3, Xiaohua Lu1
Received:
2020-09-14
Revised:
2020-10-28
Online:
2021-05-13
Published:
2021-03-28
Contact:
Shanshan Wang, Liangliang Huang
Supported by:
Shanshan Wang1,2, Liangliang Huang2, Yumeng Zhang1, Licheng Li3, Xiaohua Lu1
通讯作者:
Shanshan Wang, Liangliang Huang
基金资助:
Shanshan Wang, Liangliang Huang, Yumeng Zhang, Licheng Li, Xiaohua Lu. A mini-review on the modeling of volatile organic compound adsorption in activated carbons: Equilibrium, dynamics, and heat effects[J]. Chinese Journal of Chemical Engineering, 2021, 29(3): 153-163.
Shanshan Wang, Liangliang Huang, Yumeng Zhang, Licheng Li, Xiaohua Lu. A mini-review on the modeling of volatile organic compound adsorption in activated carbons: Equilibrium, dynamics, and heat effects[J]. 中国化学工程学报, 2021, 29(3): 153-163.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2020.11.018
[1] K. Vikrant, K.H. Kim, V. Kumar, D.A. Giannakoudakis, D.W. Boukhvalov, Adsorptive removal of an eight -component volatile organic compound mixture by Cu-, Co-, and Zr-metal-organic frameworks: Experimental and theoretical studies, Chem. Eng. J. 397(2020) 1911-1927. [2] H.J. Liu, Y.S. Yu, Q. Shao, C. Long, Porous polymeric resin for adsorbing low concentration of VOCs: Unveiling adsorption mechanism and effect of VOCs’ molecular properties, Sep. Purif. Technol. 228(2019) 115755. [3] H.L. Wang, L. Nie, J. Li, Y.F. Wang, G. Wang, J.H. Wang, Z.P. Hao, Characterization and assessment of volatile organic compounds (VOCs) emissions from typical industries, Chin. Sci. Bull. 58(7) (2013) 724-730. [4] H.L. Wang, S.A. Jing, S.R. Lou, Q.Y. Hu, L. Li, S.K. Tao, C. Huang, L.P. Qiao, C.H. Chen, Volatile organic compounds (VOCs) source profiles of on-road vehicle emissions in China, Sci. Total Environ. 607(2017) 253-261. [5] A. Lamplugh, M. Harries, F. Xiang, J. Trinh, A. Hecobian, L.D. Montoya, Occupational exposure to volatile organic compounds and health risks in Colorado nail salons, Environ. Pollut. 249(2019) 518-526. [6] B.T. Ly, Y. Kajii, T.Y.L. Nguyen, K. Shoji, D.A. Van, T.N.N. Do, T.D. Nghiem, Y. Sakamoto, Characteristics of roadside volatile organic compounds in an urban area dominated by gasoline vehicles, a case study in Hanoi, Chemosphere 254(2020) 126749. [7] P. Patnaik, A Comprehensive Guide to the Hazardous Properties of Chemical Substances, John Wiley & Sons, Inc., New Jersey, 2007. [8] C.T. Yang, G. Miao, Y.H. Pi, Q.B. Xia, J.L. Wu, Z. Li, J. Xiao, Abatement of various types of VOCs by adsorption/catalytic oxidation: A review, Chem. Eng. J. 370(2019) 1128-1153. [9] G.B. Baur, I. Yuranov, L. Kiwi-Minsker, Activated carbon fibers modified by metal oxide as effective structured adsorbents for acetaldehyde, Catal. Today 249(2015) 252-258. [10] K. Yang, Q. Sun, F. Xue, D.H. Lin, Adsorption of volatile organic compounds by metal-organic frameworks MIL-101: Influence of molecular size and shape, J. Hazard. Mater. 195(2011) 124-131. [11] L.C.A. Oliveira, R. Rios, J.D. Fabris, V. Garg, K. Sapag, R.M. Lago, Activated carbon/iron oxide magnetic composites for the adsorption of contaminants in water, Carbon 40(12) (2002) 2177-2183. [12] A.A. Basaleh, M.H. Al-Malack, T.A. Saleh, Methylene blue removal using polyamide-vermiculite nanocomposites: Kinetics, equilibrium and thermodynamic study, J. Environ. Chem. Eng. 7(3) (2019) 103107. [13] M.A. Lillo-Rodenas, D. Cazorla-Amoros, A. Linares-Solano, Behaviour of activated carbons with different pore size distributions and surface oxygen groups for benzene and toluene adsorption at low concentrations, Carbon 43(8) (2005) 1758-1767. [14] D. Das, V. Gaur, N. Verma, Removal of volatile organic compound by activated carbon fiber, Carbon 42(14) (2004) 2949-2962. [15] M.C. Huang, C.H. Chou, H.S. Teng, Pore-size effects on activated-carbon capacities for volatile organic compound adsorption, AIChE J. 48(8) (2002) 1804-1810. [16] J. Zhu, H.L. Zhan, K. Zhao, X.Y. Miao, Q. Zhou, W.Z. Yue, Competitive and synergistic adsorption of binary volatile organic compound mixtures on activated carbon, Chin. Phys. B 28(2) (2019) 020204. [17] J.R. Li, R.J. Kuppler, H.C. Zhou, Selective gas adsorption and separation in metal-organic frameworks, Chem. Soc. Rev. 38(5) (2009) 1477-1504. [18] A. Veksha, A. Uddin, E. Sasaoka, Y. Kato, Adsorption and desorption behavior of benzene on activated carbons from different precursors in dry and humid conditions, J. Chem. Eng. Japan 45(6) (2012) 387-394. [19] Z. Laskar II, J.H. Hashisho, J.E. Phillips, M. Anderson, Nichols, Modeling the effect of relative humidity on adsorption dynamics of volatile organic compound onto activated carbon, Environ. Sci. Technol. 53(5) (2019) 2647-2659. [20] L.M. Liu, Y.H. Zeng, S.J. Tan, H. Xu, D.D. Do, D. Nicholson, J.J. Liu, On the mechanism of water adsorption in carbon micropores -A molecular simulation study, Chem. Eng. J. 357(2019) 358-366. [21] E.J. Garcia, J. Perez-Pellitero, G.D. Pirngruber, C. Jallut, Sketching a portrait of the optimal adsorbent for CO2 separation by pressure swing adsorption, Ind. Eng. Chem. Res. 56(16) (2017) 4818-4829. [22] J. Kim, B. Smit, Efficient monte carlo simulations of gas molecules inside porous materials, J. Chem. Theory Comput. 8(7) (2012) 2336-2343. [23] L.C. Lin, A.H. Berger, R.L. Martin, J. Kim, J.A. Swisher, K. Jariwala, C.H. Rycroft, A.S. Bhown, M.W. Deem, M. Haranczyk, B. Smit, In silico screening of carboncapture materials, Nat. Mater. 11(7) (2012) 633-641. [24] D. Wu, C.C. Wang, B. Liu, D.H. Liu, Q.Y. Yang, C.L. Zhong, Large-scale computational screening of metal-organic frameworks for CH4/H2 separation, AIChE J. 58(7) (2012) 2078-2084. [25] X.Y. Zhang, B. Gao, A.E. Creamer, C.C. Cao, Y.C. Li, Adsorption of VOCs onto engineered carbon materials: A review, J. Hazard. Mater. 338(2017) 102-123. [26] Q.L. Qian, C.H. Gong, Z.G. Zhang, G.Q. Yuan, Removal of VOCs by activated carbon microspheres derived from polymer: a comparative study, Adsorption 21(4) (2015) 333-341. [27] Y.C. Chiang, P.C. Chaing, C.P. Huang, Effects of pore structure and temperature on VOC adsorption on activated carbon, Carbon 39(4) (2001) 523-534. [28] M. Song, W. Zhang, Y.S. Chen, J.M. Luo, J.C. Crittenden, The preparation and performance of lignin-based activated carbon fiber adsorbents for treating gaseous streams, Front. Chem. Sci. Eng. 11(3) (2017) 328-337. [29] H.B. Liu, B. Yang, N.D. Xue, Enhanced adsorption of benzene vapor on granular activated carbon under humid conditions due to shifts in hydrophobicity and total micropore volume, J. Hazard. Mater. 318(2016) 425-432. [30] H. Azimi, F.H. Tezel, J. Thibault, Effect of embedded activated carbon nanoparticles on the performance of polydimethylsiloxane (PDMS) membrane for pervaporation separation of butanol, J. Chem. Technol. Biotechnol. 92(12) (2017) 2901-2911. [31] M. Lordgooei, M.J. Rood, M. Rostam-Abadi, Modeling effective diffusivity of volatile organic compounds in activated carbon fiber, Environ. Sci. Technol. 35(3) (2001) 613-619. [32] A. Aizpuru, L. Malhautier, J.C. Roux, J.L. Fanlo, Biofiltration of a mixture of volatile organic compounds on granular activated carbon, Biotechnol. Bioeng. 83(4) (2003) 479-488. [33] S. Giraudet, P. Pre, H. Tezel, P. Le Cloirec, Estimation of adsorption energies using physical characteristics of activated carbons and VOCs’ molecular properties, Carbon 44(10) (2006) 1873-1883. [34] M.S. Kamal, S.A. Razzak, M.M. Hossain, Catalytic oxidation of volatile organic compounds (VOCs)—A review, Atmospheric Environ. 140(2016) 117-134. [35] A. Dabrowski, P. Podkoscielny, Z. Hubicki, M. Barczak, Adsorption of phenolic compounds by activated carbon-a critical review, Chemosphere 58(8) (2005) 1049-1070. [36] M. Ousmane, L.F. Liotta, G. Di Carlo, G. Pantaleo, A.M. Venezia, G. Deganello, L. Retailleau, A. Boreave, A. Giroir-Fendler, Supported Au catalysts for lowtemperature abatement of propene and toluene, as model VOCs: Support effect, Appl. Catal. B-Environ. 101(3-4) (2011) 629-637. [37] R.H. Wang, J.H. Li, Effects of precursor and sulfation on OMS-2 catalyst for oxidation of ethanol and acetaldehyde at low temperatures, Environ. Sci. Technol. 44(11) (2010) 4282-4287. [38] H.S. Davis, O.F. Wiedeman, Physical properties of acrylonitrile, Ind. Eng. Chem. 37(5) (1945) 482-485. [39] Y.L. Ren, D. Mahon, Fumigation trials on the application of ethyl formate to wheat, split faba beans and sorghum in small metal bins, J. Stored Prod. Res. 42(3) (2006) 277-289. [40] N. Tekin, C. Tarimci, Study of the structure and refractive parameters of diethylamine and triethylamine, Opt. Laser Technol. 38(7) (2006) 498-505. [41] T. Jiun-Horng, C. Hsiu-Mei, H. Guan-Yinag, C. Hung-Lung, Adsorption characteristics of acetone, chloroform and acetonitrile on sludge-derived adsorbent, commercial granular activated carbon and activated carbon fibers, J. Hazard. Mater. 154(1-3) (2008) 1183-1191. [42] R.R. Bansode, J.N. Losso, W.E. Marshall, R.M. Rao, R.J. Portier, Adsorption of volatile organic compounds by pecan shell-and almond shell-based granular activated carbons, Bioresour. Technol. 90(2) (2003) 175-184. [43] S.S. Choi, J.H. Lee, Y.M. Jin, S.H. Lee, Adsorption characteristics of volatile organic compounds onto lyocell-based activated carbon fibers, Carbon Lett. 29(6) (2019) 633-642. [44] S.W. Lee, J.K. Cheon, H.J. Park, M.G. Lee, Adsorption characteristics of binary vapors among acetone, MEK, benzene, and toluene, Korean J. Chem. Eng. 25(5) (2008) 1154-1159. [45] H.W. Hung, T.F. Lin, Prediction of the adsorption capacity for volatile organic compounds onto activated carbons by the Dubinin-Radushkevich-Langmuir model, J. Air Waste Manage. Assoc. 57(4) (2007) 497-506. [46] M.J.G. Linders, L.J.P. van den Broeke, F. Kapteijn, J.A. Moulijn, J. van Bokhoven, Binary adsorption equilibrium of organics and water on activated carbon, AIChE J. 47(8) (2001) 1885-1892. [47] M. Huggahalli, J.R. Fair, Prediction of equilibrium adsorption of water onto activated carbon, Ind. Eng. Chem. Res. 35(6) (1996) 2071-2074. [48] T. Yamamoto, S. Kataoka, T. Ohmori, Characterization of carbon cryogel microspheres as adsorbents for VOC, J. Hazard. Mater. 177(1-3) (2010) 331-335. [49] B.S. Bal’zhinimaev, E.A. Paukshtis, A.V. Toktarev, E.V. Kovalyov, M.A. Yaranova, A.E. Smirnov, S. Stompel, Effect of water on toluene adsorption over high silica zeolites, Microporous Mesoporous Mater. 277(2019) 70-77. [50] J. Rodriguez-Mirasol, J. Bedia, T. Cordero, J.J. Rodriguez, Influence of water vapor on the adsorption of VOCs on lignin-based activated carbons, Sep. Sci. Technol. 40(15) (2005) 3113-3135. [51] R.H. Bradley, M.W. Smith, A. Andreu, M. Falco, Surface studies of novel hydrophobic active carbons, Appl. Surf. Sci. 257(7) (2011) 2912-2919. [52] E. Hunter-Sellars, J.J. Tee, I.P. Parkin, D.R. Williams, Adsorption of volatile organic compounds by industrial porous materials: Impact of relative humidity, Microporous Mesoporous Mater. 298(2020) 110090. [53] F. Delage, P. Pre, P. Le Cloirec, Effects of moisture on warming of activated carbon bed during VOC adsorption, J. Environ. Eng. 125(12) (1999) 1160-1167. [54] Y.H. Magdy, A.A.M. Daifullah, Adsorption of a basic dye from aqueous solutions onto sugar-industry-mud in two modes of operations, Waste Manage. 18(4) (1998) 219-226. [55] K.Y. Foo, B.H. Hameed, Insights into the modeling of adsorption isotherm systems, Chem. Eng. J. 156(1) (2010) 2-10. [56] I. Langmuir, The constitution and fundamental properties of solids and liquids. II. Liquids, J. Am. Chem. Soc. 39(1917) 1848-1906. [57] H.M.F. Freundlich, Over the adsorption in solution, J. Phys. Chem. 57(1906) 385-471. [58] M.M. Dubinin, The potential theory of adsorption of gases and vapors for adsorbents with energetically nonuniform surfaces, Chem. Rev. 60(2) (1960) 235-241. [59] M. Temkin, V. Pyzhev, Kinetics of ammonia synthesis on promoted iron catalysts, Acta Physicochim. Urss 12(3) (1940) 327-356. [60] M. Horsfall, A.I. Spiff, Equilibrium sorption study of Al3+, Co2+ and Ag+ in aqueous solutions by fluted pumpkin (Telfairia occidentalis HOOK f) waste biomass, Acta Chim. Slov. 52(2) (2005) 174-181. [61] A.V. Hill, The combinations of haemoglobin with oxygen and with carbon monoxide. I, Biochem. J. 7(5) (1913) 471-480. [62] O. Redlich, D.L. Peterson, A useful adsorption isotherm, J. Phys. Chem. 63(6) (1959), 1024-024. [63] R. Sips, On the structure of a catalyst surface, J. Chem. Phys. 16(5) (1948) 490-495. [64] R.A. Koble, T.E. Corrigan, Adsorption isotherms for pure hydrocarbons, Ind. Eng. Chem. 44(2) (1952) 383-387. [65] A.R. Khan, I.R. AlWaheab, A. AlHaddad, A generalized equation for adsorption isotherms for multi-component organic pollutants in dilute aqueous solution, Environ. Technol. 17(1) (1996) 13-23. [66] K. Vijayaraghavan, T.V.N. Padmesh, K. Palanivelu, M. Velan, Biosorption of nickel(II) ions onto Sargassum wightii: Application of two-parameter and three-parameter isotherm models, J. Hazard. Mate. 133(1-3) (2006) 304-308. [67] D.D. Do, Adsorption Analysis: Equilibria and Kinetics, Imperial College Press, Singapore, 1998. [68] I. Langmuir, The constitution and fundamental properties of solids and liquids. Part I. solids, J. Am. Chem. Soc. 38(11) (1916) 2221-2295. [69] S. Kundu, A.K. Gupta, Arsenic adsorption onto iron oxide-coated cement (IOCC): Regression analysis of equilibrium data with several isotherm models and their optimization, Chem. Eng. J. 122(1-2) (2006) 93-106. [70] A.B. Perez-Marin, V.M. Zapata, J.F. Ortuno, M. Aguilar, J. Saez, M. Llorens, Removal of cadmium from aqueous solutions by adsorption onto orange waste, J. Hazard. Mater. 139(1) (2007) 122-131. [71] Y.S. Ho, J.F. Porter, G. McKay, Equilibrium isotherm studies for the sorption of divalent metal ions onto peat: Copper, nickel and lead single component systems, Water Air Soil Pollu. 141(1-4) (2002) 1-33. [72] S. Brunauer, P.H. Emmett, E. Teller, Adsorption of gases in multimolecular layers, J. Am. Chem. Soc. 60(1938) 309-319. [73] K. Urano, S. Omori, E. Yamamoto, Prediction method for adsorption capacities of commercial activated carbons in removal of organic vapors, Environ. Sci. Technol. 16(1) (1982) 10-14. [74] J. Prakash, N. Nirmalakhandan, R.E. Speece, Prediction of activated carbon adsorption-isotherms for organic vapors, Environ. Sci. Technol. 28(8) (1994) 1403-1409. [75] P.J. Reucroft, W.H. Simpson, L.A. Jonas, Sorption properties of activated carbon, J. Phys. Chem. 75(23) (1971) 3526-3531. [76] N.D. Hutson, R.T. Yang, Theoretical basis for the Dubinin-Radushkevitch (D-R) adsorption isotherm equation, Adsorption 3(3) (1997) 189-195. [77] J.J. Hacskaylo, M.D. LeVan, Correlation of adsorption equilibrium data using a modified Antoine equation: a new approach for pore-filling models, Langmuir 1(1) (1985) 97-100. [78] J.H. Yun, D.K. Choi, S.H. Kim, Equilibria and dynamics for mixed vapors of BTX in an activated carbon bed, AIChE J. 45(4) (1999) 751-760. [79] Z. Laskar II, J.H. Hashisho, J.E. Phillips, M. Anderson, Nichols, Competitive adsorption equilibrium modeling of volatile organic compound (VOC) and water vapor onto activated carbon, Sep. Purif. Technol. 212(2019) 632-640. [80] S. Satokawa, Y. Kobayashi, H. Fujiki, Adsorptive removal of dimethylsulfide and t-butylmercaptan from pipeline natural gas fuel on Ag zeolites under ambient conditions, Appl. Catal. B 56(1-2) (2005) 51-56. [81] W.H. Hsieh, W.T. Chiu, Y.S. Lee, Y.S. Ho, Bibliometric analysis of patent ductus arteriosus treatments, Scientometrics 60(2) (2004) 205-215. [82] Y.S. Ho, G. McKay, Pseudo-second order model for sorption processes, Process Biochem. 34(5) (1999) 451-465. [83] D.D. Zhang, J. Cao, G.P. Wu, L.Z. Cui, Dynamic adsorption model fitting studies of typical VOCs using commercial activated carbon in a fixed bed, Water Air Soil Pollut. 229(6) (2018) 178. [84] Y.H. Yoon, J.H. Nelson, Application of gas-adsorption kinetics.1. a theoreticalmodel for respirator cartridge service life, Am. Ind. Hyg. Assoc. J. 45(8) (1984) 509-516. [85] S. Chowdhury, R. Mishra, P. Saha, P. Kushwaha, Adsorption thermodynamics, kinetics and isosteric heat of adsorption of malachite green onto chemically modified rice husk, Desalination 265(1-3) (2011) 159-168. [86] X. Yang, H.H. Yi, X.L. Tang, S.Z. Zhao, Z.Y. Yang, Y.Q. Ma, T.C. Feng, X.X. Cui, Behaviors and kinetics of toluene adsorption-desorption on activated carbons with varying pore structure, J. Environ. Sci. 67(2018) 104-114. [87] Z.W. Han, S.L. Kong, H. Sui, X.G. Li, Z.S. Zhang, Preparation of carbon-silicon doping composite adsorbent material for removal of VOCs, Materials 12(15) (2019) 2438. [88] A. Joly, A. Perrard, Linear driving force models for dynamic adsorption of volatile organic compound traces by porous adsorbent beds, Math. Comput. Simul. 79(12) (2009) 3492-3499. [89] D.T. Tefera, M.J. Lashaki, M. Fayaz, Z. Hashisho, J.H. Philips, J.E. Anderson, M. Nichols, Two-dimensional modeling of volatile organic compounds adsorption onto beaded activated carbon, Environ. Sci. Technol. 47(20) (2013) 11700-11710. [90] F. Meunier, L.M. Sun, F. Kraehenbuehl, F. Stoeckli, A comparison of experimental and theoretical adsorption-kinetics of dichloromethane vapor by active-carbon under non-isothermal conditions, J. Chem. Soc.-Faraday Trans. I (84) (1988) 1973-1983. [91] S. Kaguei, Q. Yu, N. Wakao, Thermal waves in an adsorption column -parameter-estimation, Chem. Eng. Sci. 40(7) (1985) 1069-1076. [92] C.C. Huang, T.L. Hwu, Y.S. Hsia, Recovery of acetone vapor by a thermal swing adsorber with activated carbon, J. Chem. Eng. Japan 26(1) (1993) 21-27. [93] P. Le Cloirec, P. Pre, F. Delage, S. Giraudet, Visualization of the exothermal VOC adsorption in a fixed-bed activated carbon adsorber, Environ. Technol. 33(3) (2012) 285-290. [94] F. Delage, P. Pré, P. Le Cloirec, Mass transfer and warming during adsorption of high concentrations of VOCs on an activated carbon bed: Experimental and theoretical analysis, Environ. Sci. Technol. 34(22) (2000) 4816-4821. [95] P. Pré, F. Delage, P. Le Cloirec, A model to predict the adsorber thermal behavior during treatment of volatile organic compounds onto wet activated carbon, Environ. Sci. Technol. 36(21) (2002) 4681-4688. [96] E. Glueckauf, J.I. Coates, Theory of chromatography.4. The influence of incomplete equilibrium on the front boundary of chromatograms and on the effectiveness of separation, J. Chem. Soc. (OCT) (1947) 1315-1321. [97] I. Prigogine, Modération et transformations irreversibles des systemes ouverts, Bulletin de la Classe des Sciences, Academie Royale de Belgique 31(1945) 600-606. [98] I. Prigogine, Etude thermodynamique des processus irréversibles, Ph.D Thesis, Université libre de Bruxelles, Liège, Desoer (1947). [99] W.L. Xie, X.Y. Ji, X. Feng, X.H. Lu, Mass-transfer rate enhancement for CO2 separation by ionic liquids: Theoretical study on the mechanism, AIChE J. 61(12) (2015) 4437-4444. [100] T.T. Fan, W.L. Xie, X.Y. Ji, C. Liu, X. Feng, X.H. Lu, CO2/N2 separation using supported ionic liquid membranes with green and cost-effective Choline Pro / PEG200 mixtures, Chin. J. Chem. Eng. 24(11) (2016) 1513-1521. [101] J. Wang, Y. Zhu, J. Zhou, X.H. Lu, Diameter and helicity effects on static properties of water molecules confined in carbon nanotubes, Phys. Chem. Chem. Phys. 6(4) (2004) 829-835. [102] Y. Long, J.C. Palmer, B. Coasne, M. Sliwinska-Bartkowiak, K.E. Gubbins, Under pressure: Quasi-high pressure effects in nanopores, Microporous Mesoporous Mater. 154(2012) 19-23. [103] Y. Long, J.C. Palmer, B. Coasne, M. Sliwinska-Bartkowiak, G. Jackson, E.A. Muller, K.E. Gubbins, On the molecular origin of high-pressure effects in nanoconfinement: The role of surface chemistry and roughness, J. Chem. Phys. 139(2013) 144701. [104] Y. Zhu, X.H. Lu, J. Zhou, Y.R. Wang, J. Shi, Prediction of diffusion coefficients for gas, liquid and supercritical fluid: application to pure real fluids and infinite dilute binary solutions based on the simulation of Lennard-Jones fluid, Fluid Phase Equilib. 194(2002) 1141-1159. |
[1] | Yifan Jiang, Bingqi Xie, Jisong Zhang. Highly reactive and reusable heterogeneous activated carbons-based palladium catalysts for Suzuki-Miyaura reaction [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 165-172. |
[2] | Xinyu Yang, Zezhi Chen, Huijuan Gong. Coking of Pt/γ-Al2O3 catalyst in landfill gas deoxygen and its effects on catalytic performance [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 224-232. |
[3] | Huan Xiang, Huiping Zhang, Pengfei Liu, Ying Yan. Adsorption dynamics of ethane from air in structured fixed beds with different microfibrous composites [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 14-24. |
[4] | Yadong Li, Yuanhui Shen, Zhaoyang Niu, Junpeng Tian, Donghui Zhang, Zhongli Tang, Wenbin Li. Process analysis of temperature swing adsorption and temperature vacuum swing adsorption in VOCs recovery from activated carbon [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 346-360. |
[5] | Xing Su, Ning Qiao, Bao-Chang Sun. A route for the study on mass transfer enhancement by adding particles in liquid phase [J]. Chinese Journal of Chemical Engineering, 2022, 48(8): 158-165. |
[6] | Wenjian Zhu, Xuhua Shen, Rui Ou, Manoj Murugesan, Aihua Yuan, Jianfeng Liu, Xiaocai Hu, Zhen Yang, Ming Shen, Fu Yang. Superhigh selective capture of volatile organic compounds exploiting cigarette butts-derived engineering carbonaceous adsorbent [J]. Chinese Journal of Chemical Engineering, 2022, 46(6): 194-206. |
[7] | Zenan Wang, Xin Zheng, Yan Wang, Heng Lin, Hui Zhang. Evaluation of phenanthrene removal from soil washing effluent by activated carbon adsorption using response surface methodology [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 399-405. |
[8] | Jingying Xu, Yue Lyu, Jiankun Zhuo, Yishu Xu, Zijian Zhou, Qiang Yao. Formation and emission characteristics of VOCs from a coal-fired power plant [J]. Chinese Journal of Chemical Engineering, 2021, 35(7): 256-264. |
[9] | Wenjing Li, Gilmore Wellio, Tiejun Lu, Changjun Zou, Yongliang Li. Preparation and water sorption properties of novel SiO2-LiBr microcapsules for water-retaining pavement [J]. Chinese Journal of Chemical Engineering, 2021, 34(6): 230-241. |
[10] | Xinlong Yan, Yanfang Li, Xiaoyan Hu, Rui Feng, Min Zhou, Dezhi Han. Enhanced adsorption of phenol from aqueous solution by carbonized trace ZIF-8-decorated activated carbon pellets [J]. Chinese Journal of Chemical Engineering, 2021, 33(5): 279-285. |
[11] | Jiahao Cui, Shejiang Liu, Hua Xue, Xianqin Wang, Ziquan Hao, Rui Liu, Wei Shang, Dan Zhao, Hui Ding. Catalytic ozonation of volatile organic compounds (ethyl acetate) at normal temperature [J]. Chinese Journal of Chemical Engineering, 2021, 32(4): 159-167. |
[12] | Bo Lu, Yuanhui Shen, Zhongli Tang, Donghui Zhang, Gaofei Chen. Vacuum pressure swing adsorption process for coalbed methane enrichment [J]. Chinese Journal of Chemical Engineering, 2021, 32(4): 264-280. |
[13] | Ali H. Jawad, Ahmed Saud Abdulhameed, Lee D. Wilson, Syed Shatir A. Syed-Hassan, Zeid A. ALOthman, Mohammad Rizwan Khan. High surface area and mesoporous activated carbon from KOH-activated dragon fruit peels for methylene blue dye adsorption: Optimization and mechanism study [J]. Chinese Journal of Chemical Engineering, 2021, 32(4): 281-290. |
[14] | S. I. Moussa, M. M. S. Ali, Reda R. Sheha. The performance of activated carbon/NiFe2O4 magnetic composite to retain heavy metal ions from aqueous solution [J]. Chinese Journal of Chemical Engineering, 2021, 29(1): 135-145. |
[15] | Guobin Zhao, Qingrong Zheng, Xuan Zhang, Weidong Zhang. Adsorption equilibrium and the effect of honeycomb heat exchanging device on charge/discharge characteristic of methane on MIL-101(Cr) and activated carbon [J]. Chinese Journal of Chemical Engineering, 2020, 28(7): 1964-1972. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||