[1] Y.S. Ng, N.S. Jayakumar, M.A. Hashim, Behavior of hydrophobic ionic liquids as liquid membranes on phenol removal: experimental study and optimization, Desalination 278(2011) 250-258. [2] E. Lorenc-Grabowska, G. Gryglewicz, M.A. Diez, Kinetics and equilibrium study of phenol adsorption on nitrogen-enriched activated carbons, Fuel 114(2013) 235-243. [3] M.A. Oturan, J.J. Aaron, Advanced oxidation processes in water/wastewater treatment: principles and applications. A review, Crit. Rev. Environ. Sci. Technol 44(2014) 2577-2641. [4] X. He, B. Wang, Q. Zhang, Phenols removal from water by precursor preparation for MgAl layered double hydroxide: Isotherm, kinetic and mechanism, Material. Chem. Phys 221(2019) 108-117. [5] D.P. Zagklis, C.A. Paraskeva, Purification of grape marc phenolic compounds through solvent extraction, membrane filtration and resin adsorption/desorption, Sep. Purif. Technol. 156(2015) 328-335. [6] D.X. Li, J.C.C. Yu, V.H. Nguyen, J.C.S. Wu, X.X. Wang, A dual-function photocatalytic system for simultaneous separating hydrogen from water splitting and photocatalytic degradation of phenol in a twin-reactor, Appl. Catal. B-Environ 239(2018) 268-279. [7] C. Han, Y. Ye, G. Wang, W. Hong, C. Feng, Selective electro-oxidation of phenol to benzoquinone/hydroquinone on polyaniline enhances capacitance and cycling stability of polyaniline electrodes, Chem. Eng. J. 347(2018) 648-659. [8] L. Zhao, J. Deng, P. Sun, J. Liu, Y. Ji, N. Nakada, Z. Qiao, H. Tanaka, Y. Yang, Nanomaterials for treating emerging contaminants in water by adsorption and photocatalysis: Systematic review and bibliometric analysis, Sci. Total Environ. 627(2018) 1253-1263. [9] J. Zhang, X. Yan, X. Hu, R. Feng, M. Zhou, Direct carbonization of Zn/Co zeolitic imidazolate frameworks for efficient adsorption of Rhodamine B, Chem. Eng. J. 347(2018) 640-647. [10] N. Jiang, R. Shang, S.G. Heijman, L.C. Rietveld, High-silica zeolites for adsorption of organic micro-pollutants in water treatment: A review, Water Res 144(2018) 145-161. [11] B. Li, K. Sun, Y. Guo, J. Tian, Y. Xue, D. Sun, Adsorption kinetics of phenol from water on Fe/AC, Fuel 110(2013) 99-106. [12] Y. Li, X. Hu, X. Liu, Y. Zhang, Q. Zhao, P. Ning, S. Tian, Adsorption behavior of phenol by reversible surfactant-modified montmorillonite: Mechanism, thermodynamics, and regeneration, Chem. Eng. J. 334(2018) 1214-1221. [13] T.Y. Wang, C.H. Hsu, T.P. Chen, E.D. Conte, D. Fenner, L. Crossley, C.H. Honeyman, S.Y. Suen, Adsorption of phenolic compounds onto trimethylstearylammonium surfactant-immobilized cation-exchange membranes, Microchem. J. 99(2011) 388-393. [14] G. Skouteris, D. Saroj, P. Melidis, F.I. Hai, S. Ouki, The effect of activated carbon addition on membrane bioreactor processes for wastewater treatment and reclamation—A critical review, Bioresource technol 185(2015) 399-410. [15] T.M. Huggins, A. Haeger, J.C. Biffinger, Z.J. Ren, Granular biochar compared with activated carbon for wastewater treatment and resource recovery, Water Res 94(2016) 225-232. [16] S. Wong, N. Ngadi, I.M. Inuwa, O. Hassan, Recent advances in applications of activated carbon from biowaste for wastewater treatment: A short review, J. Clean. Prod 175(2018) 361-375. [17] H. Zhou, C. Wei, F. Zhang, J. Liao, Y. Hu, H. Wu, Energy-saving optimization of coking wastewater treated by aerobic bio-treatment integrating two-stage activated carbon adsorption, J. Clean. Prod. 175(2018) 467-476. [18] G. Yang, H. Chen, H. Qin, Y. Feng, Amination of activated carbon for enhancing phenol adsorption: Effect of nitrogen-containing functional groups, Appl. Surf. Sci. 293(2014) 299-305. [19] Y. Gokce, Z. Aktas, Nitric acid modification of activated carbon produced from waste tea and adsorption of methylene blue and phenol, Appl. Surf. Sci. 313(2014) 352-359. [20] B. Abussaud, H.A. Asmaly, Saleh T.A. Ihsanullah, V.K. Gupta, T. Laoui, M.A. Atieh, Sorption of phenol from waters on activated carbon impregnated with iron oxide, aluminum oxide and titanium oxide, J. Mol. Liq 213(2016) 351-359. [21] B. Nastaran, A. Saeid, M.A. Saad, L.T. Nagy, M. Victor, Y. Yusuke, Study on adsorption of copper ion from aqueous solution by MOF-derived nanoporous carbon, Micropor. Mesopor. Mater 217(2015) 173-177. [22] N.L. Torad, M. Hu, S. Ishihara, H. Sukegawa, A.A. Belik, M. Imura, K. Ariga, Y. Sakka, Y. Yamauchi, Direct synthesis of MOF-derived nanoporous carbon with magnetic Co nanoparticles toward efficient water treatment, Small 10(2014) 2096-2107. [23] B.N. Bhadra, J.K. Lee, C.W. Cho, S.H. Jhung, Remarkably efficient adsorbent for the removal of bisphenol A from water: Bio-MOF-1-derived porous carbon, Chem. Eng. J 343(2018) 225-234. [24] H.S. Zhou, S.M. Zhu, M. Hibino, I. Honma, M. Ichihara, Lithium storage in ordered mesoporous carbon (CMK-3) with high reversible specific energy capacity and good cycling performance, Adv. Mater. 15(2003) 2107-2111. [25] K.S. Park, Z. Ni, A.P. Cote, J.Y. Choi, R.D. Huang, F.J. Uribe-Romo, H.K. Chae, M. O’Keeffe, O.M. Yaghi, Exceptional chemical and thermal stability of zeolitic imidazolate frameworks, Proc. Natl. Acad. Sci. U. S. A 103(2006) 10186-10191. [26] L. Huang, M. He, B.B. Chen, Q. Cheng, B. Hu, Highly efficient magnetic nitrogendoped porous carbon prepared by one-step carbonization strategy for Hg2+ removal from water, ACS Appl. Mater. Inter 9(2017) 2550-2559. [27] J.F. Yao, R.Z. Chen, K. Wang, H.T. Wang, Direct synthesis of zeolitic imidazolate framework-8/chitosan composites in chitosan hydrogels, Micropor. Mesopor. Mater 165(2013) 200-204. [28] H. Wang, Y. Wang, A. Jia, C. Wang, L. Wu, Y. Yang, Y. Wang, A novel bifunctional Pd-ZIF-8/rGO catalyst with spatially separated active sites for the tandem Knoevenagel condensation-reduction reaction, Catal. Sci. Technol 7(2017) 5572-5584. [29] Y. El-Sayed, T.J. Bandosz, Adsorption of valeric acid from aqueous solution onto activated carbons: role of surface basic sites, J. Colloid. Interf. Sci. 273(2004) 64-72. [30] Ho, Y.S, McKay, G. The sorption of lead (II) on peat. Water Res., 33(1999) 578-584. [31] Ho, Y.S, McKay, G. Pseudo-second order model for sorption processes. Process Biochem., 34(1999) 451-465. [32] M. Kilic, E. Apaydin-Varol, A.E. Pütün, Adsorptive removal of phenol from aqueous solutions on activated carbon prepared from tobacco residues: equilibrium, kinetics and thermodynamics, J. Hazard. Mater. 189(1) (2011) 397-403. [33] L.A. Rodrigues, M.L.C.P.D. Silva, M.O. Alvarez-Mendes, A.d.R. Coutinho, G.P. Thim, Phenol removal from aqueous solution by activated carbon produced from avocado kernel seeds, Chem. Eng. J 174(2011) 49-57. [34] S. Kundu, I.H. Chowdhury, M.K. Naskar, Hierarchical porous carbon nanospheres for efficient removal of toxic organic water contaminants of phenol and methylene blue, J. Chem. Eng. Data 633(2018) 559-573. [35] L. Giraldo, J.C. Moreno-Piraján, Study of adsorption of phenol on activated carbons obtained from egg shells, J. Anal. Appl. Pyrolysis 106(2014) 41-47. [36] M. Guo, J. Wang, C. Wang, P.J. Strong, P. Jiang, Y.S. Ok, H. Wang, Carbon nanotubegrafted chitosan and its adsorption capacity for phenol in aqueous solution, Sci. Total Environ 682(2019) 340-347. [37] L. Lupa, A. Negrea, M. Ciopec, P. Negrea, R. Voda, Ionic liquids impregnated onto inorganic support used for thallium adsorption from aqueous solutions, Sep. Purif. Technol. 155(2015) 75-82. [38] L. Lupa, L. Cocheci, R. Pode, I. Hulka, Phenol adsorption using Aliquat 336 functionalized Zn-Al layered double hydroxide, Sep. Purif. Technol. 196(2018) 82-95. [39] F. Rozada, L.F. Calvo, A.I. Garcia, J. Martin-Villacorta, M. Otero, Dye adsorption by sewage sludge-based activated carbons in batch and fixed-bed systems, Bioresour. Technol. 87(3) (2003) 221-230. [40] S. Rangabhashiyam, N. Anu, M.S. Giri Nandagopal, N. Selvaraju, Relevance of isotherm models in biosorption of pollutants by agricultural byproducts, J. Environ. Chem. Eng 2(2014) 398-414. [41] M. Vithanage, S.S. Mayakaduwa, I. Herath, Y.S. Ok, D. Mohan, Kinetics, thermodynamics and mechanistic studies of carbofuran removal using biochars from tea waste and rice husks, Chemosphere 150(2016) 781-789. [42] S. Rajagopalan, O. Koper, S. Decker, K.J. Klabunde, Nanocrystalline metal oxides as destructive adsorbents for organophosphorus compounds at ambient temperatures, Chem. Eur. J. 8(2002) 2602-2607. [43] H.S. Park, J.R. Koduru, K.H. Choo, B. Lee, Activated carbons impregnated with iron oxide nanoparticles for enhanced removal of bisphenol A and natural organic matter, J. Hazard. Mater 286(2015) 315-324. [44] H. Mansouri, R.J. Carmona, A. Gomis-Berenguer, S. Souissi-Najar, A. Ouederni, C.O. Ania, Competitive adsorption of ibuprofen and amoxicillin mixtures from aqueous solution on activated carbons, J. Colloid. Interf. Sci 449(2015) 252-260. [45] A. Cabrera-Codony, E. Santos-Clotas, C.O. Ania, M.J. Martín, Competitive siloxane adsorption in multicomponent gas streams for biogas upgrading, Chem. Eng. J 344(2018) 565-573. |