[1] A. Demirbas, Heavy metal adsorption onto agro-based waste materials:a review, J. Hazard. Mater. 157(2008) 220-229. [2] M. Immamuglu, O. Tekir, Removal of copper (Ⅱ) and lead (Ⅱ) ions from aqueous solutions by adsorption on activated carbon from a new precursor hazelnut husks, Desalination 228(2008) 108-113. [3] K. Kadirvelu, J. Goe, L. Rajagopal, Sorption of lead, mercury and cadmium ions in multi-component system using carbon aerogel as adsorbent, J. Hazard. Mater. 153(2008) 502-507. [4] Y. Feng, J.L. Gong, G.M. Zeng, Q.Y. Niu, H.Y. Zhang, C.G. Niu, J.H. Deng, M. Yan, Adsorption of Cd(Ⅱ) and Zn(Ⅱ) from aqueous solutions using magnetic hydroxyapatite nanoparticles as adsorbents, Chem. Eng. J. 162(2010) 487-494. [5] P. Trivedi, L. Axe, Modeling Cd and Zn sorption to hydrous metal oxides, Environ. Sci. Technol. 34(2000) 2215-2223. [6] World Health Organization (Ed.), Guidelines for Drinking-Water Quality:Incorporating First Addendum Recommendations, 3rd ed., vol. 1, World Health Organization, Geneva, Switzerland 2006, pp. 375-376. [7] X. Wang, Z. Wang, H. Chen, Z. Wu, Removal of Cu(Ⅱ) ions from contaminated waters using a conducting microfiltration membrane, J. Hazard. Mater. 339(2017) 182-190. [8] B. Dong, A. Fishgold, P. Lee, K. Runge, M. Keswani, Sono-electrochemical recovery of metal ions from their aqueous solutions, J. Hazard. Mater. 318(2016) 379-387. [9] D. Kołodyńska, J. Krukowska-Bąk, J. Kazmierczak-Razna, R. Pietrzak, Uptake of heavy metal ions from aqueous solutions by sorbents obtained from the spent ion exchange resins, Microporous Mesoporous Mater. 244(2017) 127-136. [10] M. Ahmaruzzaman, V.K. Gupta, Rice husk and its ash as low-cost adsorbents in water and wastewater treatment, Ind. Eng. Chem. Res. 50(2011) 13589-13613. [11] Y. Wang, S. Huang, S. Kang, C. Zhang, Xi Li, Low-cost route for synthesis of mesoporous silica materials with high silanol groups and their application for Cu(Ⅱ) removal, Mater. Chem. Phys. 132(2012) 1053-1059. [12] H.P. Lu, Z.A. Li, G. Gascó, A. Méndez, Y. Shen, J. Paz-Ferreiro, Use of magnetic biochars for the immobilization of heavy metals in a multi-contaminated soil, Sci. Total Environ. 622-623(2018) 892-899. [13] T.A. Saleh, V.K. Gupta, Processing Methods, Characteristics and adsorption behavior of tires derived carbons:a review, Adv. Colloid Interf. Sci. 211(2014) 92-100. [14] V.K. Gupta, A. Nayak, S. Agarwal, Bioadsorbents for remediation of heavy metals:current status and their future prospects, Environ. Eng. Res. 20(1) (2015) 1-18. [15] D.H. Reddy, Y.S. Yun, Spinel ferrite magnetic adsorbents:alternative future materials for waterpurification, Coord. Chem. Rev. 315(2016) 90-111. [16] M.K. Ridley, M.L. Machesky, J.D. Kubicki, Experimental study of strontium adsorption on anatase nanoparticles as a function of size with a density functional theory and CD model interpretation, Langmuir 31(2015) 703-713. [17] G. Zhang, H. Liu, R. Liu, J. Qu, Removal of phosphate from water by a Fe-Mn binary oxide adsorbent, J. Colloid Interface Sci. 335(2009) 168-174. [18] M. Changmai, M.K. Purkait, Kinetics, equilibrium and thermodynamic study of phenol adsorption using NiFe2O4 nanoparticles aggregated on PAC, J. Water Proc. Eng. 16(2017) 90-97. [19] L. Zhou, L. Ji, P.-C. Ma, Y. Shao, H. Zhang, W. Gao, Y. Li, Development of carbon nanotubes/CoFe2O4 magnetic hybrid material for removal of tetrabromobisphenol A and Pb(Ⅱ), J. Hazard. Mater. 265(2014) 104-114. [20] Q. Chang, L. Liu, Y. Muhammad, Sh. Weng, Z. Feng, T. Wei, J. Lei, Z. Tong, Z. Zhao, Synthesis of magnetic Fe-N doped porous carbon possessing hollow-acicular structure with high activity and stability for lumbrukinase adsorptive immobilization, Chem. Eng. J. 334(2018) 1699-1708. [21] K. Pyrzynska, M. Bystrzejewski, Comparative study of heavy metal ions sorption onto activated carbon, carbon nanotubes, and carbon-encapsulated magnetic nanoparticles, Colloids Surf. A Physicochem. Eng. Aspects 362(2010) 102-109. [22] H.H. Someda, M.R. Ezz El-Din, R.R. Sheha, H.A. El-Naggar, Application of a carbonized apricot stone for the treatment of some radioactive nuclei, J. Radioanal. Nucl. Chem. 254(2) (2002) 373-378. [23] H.H. Someda, R.R. Sheha, Solid phase extractive preconcentration of some actinide elements using impregnated carbon, J. Radioanal. Nucl. Chem. 7(2) (2006) 37-43. [24] A.A. El-Zahhar, S.E. Sharaf El, R.R. Sheha Deen, Sorption of iron from phosphoric acid solution using polyacrylamide grafted activated carbon, J. Environ. Chem. Eng. 1(2013) 290-299. [25] L. Shao, Z. Ren, G. Zhang, L. Chen, Facile synthesis, characterization of a MnFe2O4/activated carbon magnetic composite and its effectiveness in tetracycline removal, Mater. Chem. Phys. 135(2012) 16-24. [26] H. Sharififard, M. Soleimani, Performance comparison of activated carbon and ferric oxide-hydroxide-activated carbon nanocomposite as vanadium (V) ion adsorbents, RSC Adv. 5(2015) 80650-80660. [27] E. Pehlivan, S. Cetin, B.H. Yańyk, Equilibrium studies for the sorption of zinc and copper from aqueous solutions using sugar beet pulp and fly ash, J. Hazard. Mater. B 135(2006) 193-199. [28] J. Zhou, S. Yang, J. Yu, Facile fabrication of mesoporous MgO microspheres and their enhanced adsorption performance for phosphate from aqueous solutions, Colloids Surf. A Physicochem. Eng. Asp. 379(2011) 102-108. [29] L. Liu, Y. Wei, Q. Chang, H. Sun, K. Chai, Z. Huang, Zhenxia Zhao, Zhongxing Zhao, Ultra-fast screening of a novel moderately hydrophilic angiotensin converting enzyme inhibitory peptide RYL from silkworm pupa using Fe-doped silkworm excrement derived biocarbon:Waste Conversion by Waste, J. Agric. Food Chem. 65(51) (2017) 11202-11211. [30] P. Hu, X. Liang, M. Yaseen, X. Sun, Z. Tong, Zhongxing Zhao, Zhenxia Zhao, Preparation of highly-hydrophobic novel N-coordinated UiO-66(Zr) with dopamine via fast mechano-chemical method for (CHO-/Cl-)-VOCs competitive adsorption in humid environment, Chem. Eng. J. 332(2018) 608-618. [31] Z.H. Wang, B. Xiang, R.M. Cheng, Y. Li, Behaviors and mechanism of acid dyes sorption onto diethylenetriamine-modified native and enzymatic hydrolysis starch, J. Hazard. Mater. 183(1-3) (2010) 224-232. [32] L. Zhang, W.L. Jiao, J. He, A. Zhang, Synthesis of PAA/NiFe2O4 composite nanoparticles and the effect of microstructure on magnetism, J. Alloys Compd. 577(2013) 538-542. [33] N.W. Li, M.B. Zheng, X.F. Chang, G. Ji, H. Lu, L. Xue, L. Pan, J. Cao, Preparation of magnetic CoFe2O4-functionalized graphene sheets via a facile hydrothermal method and their adsorption properties, J. Solid State Chem. 184(4) (2011) 953-958. [34] M.H. Do, N.H. Phan, T.D. Nguyen, T.T. Pham, V.K. Nguyen, T.T. Vu, T.K. Nguyen, Activated carbon/Fe3O4 nanoparticle composite:fabrication, methyl orange removal and regeneration by hydrogen peroxide, Chemosphere 85(8) (2011) 1269-1276. [35] W. Deligeer, Y.W. Gao, S. Asuha, Adsorption of methyl orange on mesoporous gFe2O3/SiO2 nanocomposites, Appl. Surf. Sci. 257(8) (2011) 3524-3528. [36] L. Ai, J. Jiang, Fast removal of organic dyes from aqueous solutions by AC/ferrospinel composite, Desalination 262(2010) 134-140. [37] A. Üçer, A. Uyanik, Ş.F. Aygün, Adsorption of Cu(Ⅱ), Cd(Ⅱ), Zn(Ⅱ), Mn(Ⅱ) and Fe(Ⅲ) ions by tannic acid immobilized activated carbon, Sep. Purif. Technol. 47(3) (2006) 113-118. [38] C.G. Lee, J.W. Jeon, M.J. Hwang, K.H. Ahn, C. Park, J.W. Choi, S.H. Lee, Lead and copper removal from aqueous solutions using carbon foam derived from phenol resin, Chemosphere 130(2015) 59-65. [39] J.H. Park, Y.S. Ok, S.H. Kim, J.S. Cho, J.S. Heo, R.D. Delaune, D.C. Seo, Competitive adsorption of heavy metals onto sesame straw biochar in aqueous solutions, Chemosphere 142(2016) 77-83. [40] S. Lagergren, Zurtheorie der sogenannten adsorption gelösterstoffe, KungligaSvenskaVetenskapsakademiens, Handl. Band 24(4) (1898) 1-39. [41] Y.S. Ho, G. Mckay, Sorption of dye from aqueous solution by peat, Chem. Eng. J. 70(1998) 115-124. [42] Y. Ren, X. Wei, M. Zhang, Adsorption character for removal Cu(Ⅱ) by magnetic Cu(Ⅱ) ion imprinted composite adsorbent, J. Hazard. Mater. 158(2008) 14-22. [43] R.R. Sheha, Preparation and performance of a novel composite as a reactive resin for copper retention, Chem. Eng. J. 213(2012) 163-174. [44] J.P. Gustafsson, https://vminteq.lwr.kth.se/. [45] R.N. Patel, N. Singh, R.P. Shivastava, K.K. Shukla, P.K. Singh, Potentiometric and spectrometric study:copper(Ⅱ), nickel(Ⅱ) and zinc(Ⅱ) complexes with potentially tridentate and monodentate ligands, Proc. Indian Acad. Sci. (Chem. Sci.) 114(2) (2002) 115-124. [46] H. Irving, R.J. Williams, The stability of transition-metal complexes, J. Chem. Soc. (1953) 3192-3210. [47] S.P. Santoso, A.E. Angkawijaya, Y.H. Ju, Complex stability in aqueous solution of metal ions (Cu2+, Zn2+, and Mn2+) with pyrocatechuic acid ligand, Int. J. Adv. Sci. Eng. Technol. 3(3) (2015) 23-28. [48] M.A. Montes-Morán, J.A. Menéndez, E. Fuente, D. Suárez, Contribution of the basal planes to carbon basicity:an ab initio study of the H3O+ π-interaction in cluster models, J. Phys. Chem. B 102(1998) 595-5601. [49] J. Rivera-Utrilla, M. Sáncher-Polo, Adsorption of Cr (Ⅲ) on ozonised activated carbon. Importance of Cπ-cation interactions, Water Res. 37(2003) 3325-3340. [50] S. Daneshfozoun, B. Abdullah, M.A. Abdullah, The effects of oil palm empty fruit bunch sorbent sizes on plumbum (Ⅱ) ion sorption, Adv. Mater. Res. Trans. Tech. Publ. 1133(2016) 542-546. [51] K.A. Krishan, T.S. Anirudhan, Removal of mercury(Ⅱ) from aqueous solutions and chlor-alkali industry effluent by steam activated and sulphurised activated carbons prepared from bagasse pith:kinetics and equilibrium studies, J. Hazard. Mater. 92(2002) 161-183. [52] J. Zhu, B. Deng, J. Yang, D. Gang, Modifying activated carbon with hybrid ligands for enhancing aqueous mercury removal, Carbon 47(2009) 2014-2025. [53] C. Chen, J. Hu, D. Shao, J. Li, X. Wang, Adsorption behavior of multiwall carbon nanotube/iron oxide magnetic composites for Ni(Ⅱ) and Sr(Ⅱ), J. Hazard. Mater. 164(2009) 923-928. [54] R.R. Sheha, E.A. El-Shazly, Kinetics and equilibrium modeling of Se(IV) removal from aqueous solutions using metal oxides, Chem. Eng. J. 160(2010) 63-71. |