Chinese Journal of Chemical Engineering ›› 2021, Vol. 29 ›› Issue (1): 146-153.DOI: 10.1016/j.cjche.2020.08.011
• Separation Science and Engineering • Previous Articles Next Articles
Saeideh Dermanaki Farahani, Javad Zolgharnein
Received:
2020-02-25
Revised:
2020-07-24
Online:
2021-04-02
Published:
2021-01-28
Contact:
Javad Zolgharnein
Supported by:
Saeideh Dermanaki Farahani, Javad Zolgharnein
通讯作者:
Javad Zolgharnein
基金资助:
Saeideh Dermanaki Farahani, Javad Zolgharnein. Multivariate optimization of high removal of lead(II) using an efficient synthesized Ni-based metal-organic framework adsorbent[J]. Chinese Journal of Chemical Engineering, 2021, 29(1): 146-153.
Saeideh Dermanaki Farahani, Javad Zolgharnein. Multivariate optimization of high removal of lead(II) using an efficient synthesized Ni-based metal-organic framework adsorbent[J]. 中国化学工程学报, 2021, 29(1): 146-153.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2020.08.011
[1] M.R. Awual, Innovative composite material for efficient and highly selective Pb(Ⅱ) ion capturing from wastewater, J. Mol. Liq. 284(2019) 502-510. [2] M.R. Karim, M.O. Aijaz, N.H. Alharth, H.F. Alharbi, F.S. Al-Mubaddel, M.R. Awual, Composite nanofibers membranes of poly(vinyl alcohol)/chitosan for selective lead(Ⅱ) and cadmium(Ⅱ) ions removal from wastewater, Ecotoxicol. Environ. Saf. 169(2019) 479-486. [3] J.E. Efome, D. Rana, T. Matsuura, C.Q. Lan, Effects of operating parameters and coexisting ions on the efficiency of heavy metal ions removal by nano-fibrous metal-organic framework membrane filtration process, Sci. Total Environ. 674(2019) 355-362. [4] I. Ali, Microwave assisted economic synthesis of multi walled carbon nanotubes for arsenic species removal in water:batch and column operations, J. Mol. Liq. 217(2018) 677-685. [5] M. Ahmaruzzaman, V.K. Gupta, Rice husk and its ash as low-cost adsorbents in water and wastewater treatment, Ind. Eng. Chem. Res. 50(2011) 13589-13613. [6] V.K. Gupta, I. Ali, T.A. Saleh, M.N. Siddiqui, S. Agarwal, Chromium removal from water by activated carbon developed from waste rubber tires, Environ. Sci. Pollut. Res. 20(2013) 1261-1268. [7] J.E. Efome, D. Rana, T. Matsuura, C.Q. Lan, Metal-organic frameworks supported on nanofibers to remove heavy metals, J. Mater. Chem. A 6(2018) 4550-4555. [8] S. Haider, S.Y. Park, Preparation of the electrospun chitosan nanofibers and their applications to the adsorption of Cu(Ⅱ) and Pb(Ⅱ) ions from an aqueous solution, J. Membr. Sci. 328(2009) 90-96. [9] K.B. Rufato, V.C. Almeida, M.J. Kipper, A.F. Rubira, A.F. Martins, E.C. Muniz, Polysaccharide-based adsorbents prepared in ionic liquid with high performance for removing Pb(Ⅱ) from aqueous systems, Carbohydr. Polym. 215(2019) 272-279. [10] D. Pathania, A. Sharma, Z.M. Siddiqi, Removal of Congo red dye from aqueous system using Phoenix dactylifera seeds, J. Mol. Liq. 219(2016) 359-367. [11] G. Akkaya Sayili, Synthesis, characterization and adsorption properties of a novel biomagnetic composite for the removal of Congo red from aqueous medium, J. Mol. Liq. 211(2015) 515-526. [12] J.E. Efome, D. Rana, T. Matsuura, C.Q. Lan, Experiment and modeling for flux and permeate concentration of heavy metal ion in adsorptive membrane filtration using a metal-organic framework incorporated nanofibrous membrane, Chem. Eng. J. 352(2018) 737-744. [13] V.K. Gupta, T.A. Saleh, Sorption of pollutants by porous carbon, carbon nanotubes and fullerene-an overview, Environ. Sci. Pollut. Res. 20(2013) 2828-2843. [14] Y. Chen, Y. Long, Q. Li, X. Chen, X. Xu, Synthesis of high-performance sodium carboxymethyl cellulose-based adsorbent for effective removal of methylene blue and Pb (Ⅱ), Int. J. Biol. Macromol. 126(2019) 107-117. [15] G. Li, J. Ye, Q. Fang, F. Liu, Amide-based covalent organic frameworks materials for efficient and recyclable removal of heavy metal lead (Ⅱ), Chem. Eng. J. (2019) 822-830. [16] M.R. Awual, An efficient composite material for selective lead(Ⅱ) monitoring and removal from wastewater, J. Environ. Chem. Eng. 7(2019) 103087. [17] M.R. Awual, A. Islam, M.M. Hasan, M.M. Rahman, A.M. Asiri, M.A. Khaleque, M. Chanmiya Sheikh, Introducing an alternate conjugated material for enhanced lead (Ⅱ) capturing from wastewater, J. Clean. Prod. 224(2019) 920-929. [18] L. Fu, S. Wang, G. Lin, L. Zhang, Q. Liu, H. Zhou, C. Kang, S. Wan, H. Li, S. Wen, Postmodification of UiO-66-NH2 by resorcyl aldehyde for selective removal of Pb(Ⅱ) in aqueous media, J. Clean. Prod. 229(2019) 470-479. [19] L. Wang, J. Li, Q. Jiang, L. Zhao, Water-soluble Fe3O4 nanoparticles with high solubility for removal of heavy-metal ions from waste water, Dalton Trans. 41(2012) 4544-4551. [20] D. Lv, Y. Liu, J. Zhou, K. Yang, Z. Lou, S.A. Baig, X. Xu, Application of EDTA-functionalized bamboo activated carbon (BAC) for Pb(Ⅱ) and Cu(Ⅱ) removal from aqueous solutions, Appl. Surf. Sci. 428(2017) 648-658. [21] A. Baruah, S. Mondal, L. Sahoo, U.K. Gautam, Ni-Fe-layered double hydroxide/Ndoped graphene oxide nanocomposite for the highly efficient removal of Pb(Ⅱ) and Cd(Ⅱ) ions from water, J. Solid State Chem. 280(2019) 120963. [22] Z. Hasan, S.H. Jhung, Removal of hazardous organics from water using metal-organic frameworks (MOFs):plausible mechanisms for selective adsorptions, J. Hazard. Mater. 283(2015) 329-339. [23] S. Khanjani, A. Morsali, Ultrasound-promoted coating of MOF-5 on silk fiber and study of adsorptive removal and recovery of hazardous anionic dye "Congo red,", Ultrason. Sonochem. 21(2014) 1424-1429. [24] C. Janiak, J.K. Vieth, MOFs, MILs and more:concepts, properties and applications for porous coordination networks (PCNs), New J. Chem. 34(2010) 2366-2388. [25] N.A. Khan, Z. Hasan, S.H. Jhung, Adsorptive removal of hazardous materials using metal-organic frameworks (MOFs):a review, J. Hazard. Mater. 244-245(2013) 444-456. [26] J.E. Efome, D. Rana, T. Matsuura, C.Q. Lan, Insight studies on metal-organic framework nanofibrous membrane adsorption and activation for heavy metal ions removal from aqueous solution, ACS Appl. Mater. Interfaces 10(2018) 18619-18629. [27] M.Y. Masoomi, A. Morsali, P.C. Junk, Rapid mechanochemical synthesis of two new Cd(Ⅱ)-based metal-organic frameworks with high removal efficiency of Congo red, CrystEngComm. 17(2015) 686-692. [28] W.J. Son, J. Kim, J. Kim, W.S. Ahn, Sonochemical synthesis of MOF-5, Chem. Commun. (2008) 6336-6338. [29] L.G. Qiu, Z.Q. Li, Y. Wu, W. Wang, T. Xu, X. Jiang, Facile synthesis of nanocrystals of a microporous metal-organic framework by an ultrasonic method and selective sensing of organoamines, Chem. Commun. (2008) 3642-3644. [30] C. Vaitsis, G. Sourkouni, C. Argirusis, Metal-organic frameworks (MOFs) and ultrasound:A review, Ultrason. Sonochem. 52(2019) 106-119. [31] N. Chang, C.-X. Yang, X.-P. Yan, Application metal-organic frameworks:to analytical chemistry, Encycl. Inorg. Bioinorg. Chem. (2014) 1-14. [32] J. Zolgharnein, S. Dermanaki Farahani, M. Bagtash, S. Amani, Application of a new metal-organic framework of[Ni2F2(4,4'-bipy)2(H2O)2](VO3)2.8H2O as an efficient adsorbent for removal of Congo red dye using experimental design optimization, Environ. Res. 182(2020) 109054. [33] J. Zolgharnein, N. Asanjarani, S.N. Mousavi, Optimization and characterization of Tl (I) adsorption onto modified Ulmus carpinifolia tree leaves, clean-soil, air, Water. 39(2010) 250-258. [34] R. Leardi, Experimental design in chemistry:a tutorial, Anal. Chim. Acta 652(2009) 161-172. [35] J. Zolgharnein, A. Shahmoradi, J.B. Ghasemi, Comparative study of Box-Behnken, central composite, and Doehlert matrix for multivariate optimization of Pb (Ⅱ) adsorption onto Robinia tree leaves, J. Chemom. 27(2013) 12-20. [36] S.L.C. Ferreira, R.E. Bruns, H.S. Ferreira, G.D. Matos, J.M. David, G.C. Brandão, E.G.P. da Silva, L.A. Portugal, P.S. dos Reis, A.S. Souza, W.N.L. dos Santos, Box-Behnken design:an alternative for the optimization of analytical methods, Anal. Chim. Acta 597(2007) 179-186. [37] K.Y. Foo, B.H. Hameed, Insights into the modeling of adsorption isotherm systems, Chem. Eng. J. 156(2010) 2-10. [38] V. Vimonses, S. Lei, B. Jin, C.W.K. Chow, C. Saint, Kinetic study and equilibrium isotherm analysis of Congo Red adsorption by clay materials, Chem. Eng. J. 148(2009) 354-364. [39] J. Zolgharnein, A. Shahmoradi, P. Zolgharnein, S. Amani, Multivariate optimization and adsorption characterization of As(Ⅲ) removal by using fraxinus tree leaves, Chem. Eng. Commun. 203(2016) 210-223. [40] J. Zolgharnein, A. Shahmoradi, Adsorption of Cr(VI) onto Elaeagnus tree leaves:statistical optimization, equilibrium modeling, and kinetic studies, J. Chem. Eng. Data 55(2010) 3428-3437. [41] M. Ghaedi, S. Hajjati, Z. Mahmudi, I. Tyagi, S. Agarwal, A. Maity, V.K. Gupta, Modeling of competitive ultrasonic assisted removal of the dyes-methylene blue and Safranin-O using Fe3O4 nanoparticles, Chem. Eng. J. 268(2015) 28-37, https://doi.org/10.1016/j.cej.2014.12.090. [42] D.L. Pavia, G.M. Lampman, G.S. Kriz, J.R. Vyvyan, Introduction to Spectroscopy, Fourth, Brooks/Cole, Cengage Learning, USA, 2009. [43] K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds-Part a:Theory and Applications in Inorganic Chemistry, Sixth, New Jersey, 2009. [44] R. Fernández De Luis, M.K. Urtiaga, J.L. Mesa, A.T. Aguayo, T. Rojo, M.I. Arriortua, Four nodal self-catenated[{Ni8(Bpy)16}V24O68].8.5(H2O), combining three dimensional metal-organic and inorganic frameworks, CrystEngComm 12(2010) 1880-1886. [45] L. Yang, T. Wen, L. Wang, T. Miki, H. Bai, X. Lu, H. Yu, T. Nagasaka, The stability of the compounds formed in the process of removal Pb(Ⅱ), Cu(Ⅱ) and Cd(Ⅱ) by steelmaking slag in an acidic aqueous solution, J. Environ. Manag. 231(2019) 41-48. [46] H. Zhang, Y. Li, X. Wu, Y. Zhang, D. Zhang, Application of response surface methodology to the treatment landfill leachate in a three-dimensional electrochemical reactor, Waste Manag. 30(2010) 2096-2102. [47] S. Liu, Y. Ding, P. Li, K. Diao, X. Tan, F. Lei, Y. Zhan, Q. Li, B. Huang, Z. Huang, Adsorption of the anionic dye Congo red from aqueous solution onto natural zeolites modified with N,N-dimethyl dehydroabietylamine oxide, Chem. Eng. J. 248(2014) 135-144. [48] M. Roosta, M. Ghaedi, A. Daneshfar, R. Sahraei, A. Asghari, Optimization of the ultrasonic assisted removal of methylene blue by gold nanoparticles loaded on activated carbon using experimental design methodology, Ultrason. Sonochem. 21(2014) 242-252. [49] F. Nekouei, S. Nekouei, I. Tyagi, V.K. Gupta, Kinetic, thermodynamic and isotherm studies for acid blue 129 removal from liquids using copper oxide nanoparticlemodified activated carbon as a novel adsorbent, J. Mol. Liq. 201(2015) 124-133. [50] M.A.M. Salleh, D.K. Mahmoud, W.A.W.A. Karim, A. Idris, Cationic and anionic dye adsorption by agricultural solid wastes:a comprehensive review, Desalination 280(2011) 1-13. [51] H. Qiu, L. Lv, B. Pan, Q. Zhang, W. Zhang, Q. Zhang, Critical review in adsorption kinetic models, J. Zhejiang Univ. A. 10(2009) 716-724. [52] J. Shu, Z. Wang, Y. Huang, N. Huang, C. Ren, W. Zhang, Adsorption removal of Congo red from aqueous solution by polyhedral Cu2O nanoparticles:kinetics, isotherms, thermodynamics and mechanism analysis, J. Alloys Compd. 633(2015) 338-346. [53] A.B. Albadarin, C. Mangwandi, A.H. Al-Muhtaseb, G.M. Walker, S.J. Allen, M.N.M. Ahmad, Kinetic and thermodynamics of chromium ions adsorption onto low-cost dolomite adsorbent, Chem. Eng. J. 179(2012) 193-202. [54] S.J. Allen, Q. Gan, R. Matthews, P.A. Johnson, Comparison of optimised isotherm models for basic dye adsorption by kudzu, Bioresour. Technol. 88(2003) 143-152. [55] S.G. Wang, W.X. Gong, X.W. Liu, Y.W. Yao, B.Y. Gao, Q.Y. Yue, Removal of lead(Ⅱ) from aqueous solution by adsorption onto manganese oxide-coated carbon nanotubes, Sep. Purif. Technol. 58(2007) 17-23. [56] J. Goel, K. Kadirvelu, C. Rajagopal, V.K. Garg, Removal of lead(Ⅱ) by adsorption using treated granular activated carbon:batch and column studies, J. Hazard. Mater. 125(2005) 211-220. [57] M. Sekar, V. Sakthi, S. Rengaraj, Kinetics and equilibrium adsorption study of lead(Ⅱ) onto activated carbon prepared from coconut shell, J. Colloid Interface Sci. 279(2004) 307-313. [58] Q. Wang, C. Zheng, Z. Shen, Q. Lu, C. He, T.C. Zhang, J. Liu, Polyethyleneimine and carbon disulfide co-modified alkaline lignin for removal of Pb2+ ions from water, Chem. Eng. J. (2019) 265-274. [59] H. Demey, T. Melkior, A. Chatroux, K. Attar, S. Thiery, H. Miller, M. Grateau, A.M. Sastre, M. Marchand, Evaluation of torrefied poplar-biomass as a low-cost sorbent for lead and terbium removal from aqueous solutions and energy co-generation, Chem. Eng. J. 361(2019) 839-852. [60] S. Bao, K. Li, P. Ning, J. Peng, X. Jin, L. Tang, Highly effective removal of mercury and lead ions from wastewater by mercaptoamine-functionalised silica-coated magnetic nano-adsorbents:behaviours and mechanisms, Appl. Surf. Sci. 393(2016) 457-466. [61] S. Kamari, F. Ghorbani, A. Mohammad, Adsorptive removal of lead from aqueous solutions by amine-functionalized magMCM-41 as a low-cost nanocomposite prepared from rice husk:modeling and optimization by response surface methodology, Sustain. Chem. Pharm. 13(2019) 100153. [62] R. Gao, L. Xiang, H. Hu, Q. Fu, J. Zhu, Y. Liu, G. Huang, High-efficiency removal capacities and quantitative sorption mechanisms of Pb by oxidized rape straw biochars, Sci. Total Environ. 699(2019) 134262. [63] A.E. Burakov, E.V. Galunin, I.V. Burakova, A.E. Kucherova, S. Agarwal, A.G. Tkachev, V. K. Gupta, Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes:a review, Ecotoxicol. Environ. Saf. 148(2018) 702-712. [64] V.K. Gupta, A. Nayak, S. Agarwal, Bioadsorbents for remediation of heavy metals:current status and their future prospects, Environ. Eng. Res. 20(2015) 001-018. [65] R. Aigbe, D. Kavaz, Unravel the potential of zinc oxide nanoparticle-carbonized sawdust matrix for removal of lead (Ⅱ) ions from aqueous solution, Chin. J. Chem. Eng. (2020) https://doi.org/10.1016/j.cjche.2020.05.007. [66] F. Ke, J. Jiang, Y. Li, J. Liang, X. Wan, S. Ko, Highly selective removal of Hg2+ and Pb2+ by thiol-functionalized Fe3O4@metal-organic framework core-shell magnetic microspheres, Appl.Surf.Sci. 15(2017) 266-274. |
[1] | Yingli Li, Zhishuncheng Li, Guangfei Qu, Rui Li, Shuaiyu Liang, Junhong Zhou, Wei Ji, Huiming Tang. Mechanism, behaviour and application of iron nitrate modified carbon nanotube composites for the adsorption of arsenic in aqueous solutions [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 26-36. |
[2] | Chuang Liang, Zhihao Liu, Baochang Sun, Haikui Zou, Guangwen Chu. Improvement in discharge characteristics and energy yield of ozone generation via configuration optimization of a coaxial dielectric barrier discharge reactor [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 61-68. |
[3] | Jing Huang, Honghui Cai, Qian Zhao, Yunpeng Zhou, Haibo Liu, Jing Wang. Dual-functional pyrene implemented mesoporous silicon material used for the detection and adsorption of metal ions [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 108-117. |
[4] | Lingli Chen, Yueting Shi, Sijun Xu, Junle Xiong, Fang Gao, Shengtao Zhang, Hongru Li. Enhanced adsorption of target branched compounds including antibiotic norfloxacin frameworks on mild steel surface for efficient protection: An experimental and molecular modelling study [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 212-227. |
[5] | Xiaolin Guo, Zhaoyang Zhang, Pengfei Xing, Shuai Wang, Yibing Guo, Yanxin Zhuang. Kinetic mechanism of copper extraction from methylchlorosilane slurry residue using hydrogen peroxide as oxidant [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 228-234. |
[6] | Alexander Nti Kani, Evans Dovi, Aaron Albert Aryee, Runping Han, Zhaohui Li, Lingbo Qu. Mechanisms and reusability potentials of zirconium-polyaziridine-engineered tiger nut residue towards anionic pollutants [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 275-292. |
[7] | Yuan Liu, Hanting Xiong, Jingwen Chen, Shixia Chen, Zhenyu Zhou, Zheling Zeng, Shuguang Deng, Jun Wang. One-step ethylene separation from ternary C2 hydrocarbon mixture with a robust zirconium metal-organic framework [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 9-15. |
[8] | Hui Jiang, Zijian Zhao, Ning Yu, Yi Qin, Zhengwei Luo, Wenhua Geng, Jianliang Zhu. Synthesis, characterization, and performance comparison of boron using adsorbents based on N-methyl-D-glucosamine [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 16-31. |
[9] | Xun Tao, Fan Zhou, Xinlei Yu, Songling Guo, Yunfei Gao, Lu Ding, Guangsuo Yu, Zhenghua Dai, Fuchen Wang. Effect of carbon dioxide on oxy-fuel combustion of hydrogen sulfide: An experimental and kinetic modeling [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 105-117. |
[10] | Yaran Bu, Changchun Wu, Lili Zuo, Qian Chen. The calculation and optimal allocation of transmission capacity in natural gas networks with MINLP models [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 251-261. |
[11] | Runze Chen, Yuran Chen, Xuemin Liang, Yapeng Kong, Yangyang Fan, Quan Liu, Zhenyu Yang, Feiying Tang, Johnny Muya Chabu, Maru Dessie Walle, Liqiang Wang. Oxidative exfoliation of spent cathode carbon: A two-in-one strategy for its decontamination and high-valued application [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 262-269. |
[12] | Junyang Liu, Luming Wang, Yuhang Bian, Chunshan Li, Zengxi Li, Jie Li. Liquid-phase esterification of methacrylic acid with methanol catalyzed by cation-exchange resin in a fixed bed reactor: Experimental and kinetic studies [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 1-10. |
[13] | Wei Wang, Romain Lemaire, Ammar Bensakhria, Denis Luart. Thermogravimetric analysis and kinetic modeling of the co-pyrolysis of a bituminous coal and poplar wood [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 53-68. |
[14] | Shanghong Ma, Haitao Zhang, Jianbo Qu, Xiuzhong Zhu, Qingfei Hu, Jianyong Wang, Peng Ye, Futao Sai, Shiwei Chen. Preparation of waterborne polyurethane/β-cyclodextrin composite nanosponge by ion condensation method and its application in removing of dyes from wastewater [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 124-136. |
[15] | Bing Liu, Yingjiao Li, Moses Arowo, Guangwen Chu, Yong Luo, Liangliang Zhang, Haikui Zou, Baochang Sun. Sulfonation of 1, 4-diaminoanthraquinone leuco by chlorosulfonic acid: Kinetics and process intensification [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 163-169. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||