Chinese Journal of Chemical Engineering ›› 2019, Vol. 27 ›› Issue (9): 2014-2025.DOI: 10.1016/j.cjche.2018.12.016
Previous Articles Next Articles
Jinlong Cui1, Zhenfeng Sun1, Xiaohui Wang1, Bin Yu2, Shudong Leng2, Guangjin Chen1, Changyu Sun1
Received:
2018-09-19
Revised:
2018-11-08
Online:
2019-12-04
Published:
2019-09-28
Contact:
Xiaohui Wang, Changyu Sun
Supported by:
Jinlong Cui1, Zhenfeng Sun1, Xiaohui Wang1, Bin Yu2, Shudong Leng2, Guangjin Chen1, Changyu Sun1
通讯作者:
Xiaohui Wang, Changyu Sun
基金资助:
Jinlong Cui, Zhenfeng Sun, Xiaohui Wang, Bin Yu, Shudong Leng, Guangjin Chen, Changyu Sun. Fundamental mechanisms and phenomena of clathrate hydrate nucleation[J]. Chinese Journal of Chemical Engineering, 2019, 27(9): 2014-2025.
Jinlong Cui, Zhenfeng Sun, Xiaohui Wang, Bin Yu, Shudong Leng, Guangjin Chen, Changyu Sun. Fundamental mechanisms and phenomena of clathrate hydrate nucleation[J]. 中国化学工程学报, 2019, 27(9): 2014-2025.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2018.12.016
[1] P. Englezos, Clathrate hydrates, Ind. Eng. Chem. Res. 32(7) (1993) 1251-1274. [2] L. Pauling, R.E. Marsh, The structure of chlorine hydrate, Proc. Natl. Acad. Sci. U. S. A. 38(2) (1952) 112-118. [3] W.F. Claussen, A second water structure for inert gas hydrates, J. Chem. Phys. 19(11) (1951) 1425-1426. [4] J.A. Ripmeester, S.T. John, C.I. Ratcliffe, B.M. Powell, A new clathrate hydrate structure, Nature 325(6100) (1987) 135-136. [5] H. Davy, The Bakerian Lecture:On some of the combinations of oxymuriatic gas and oxygene, and on the chemical relations of these principles, to inflammable bodies, Philos. Trans. R. Soc. Lond. 101(1811) 1-35. [6] E.G. Hammerschmidt, Formation of gas hydrates in natural gas transmission lines, Ind. Eng. Chem. 26(8) (1934) 851-855. [7] F. Tzirakis, P. Stringari, N. von Solms, C. Coquelet, G. Kontogeorgis, Hydrate equilibrium data for the CO2+ N2 system with the use of tetra-n-butylammonium bromide (TBAB), cyclopentane (CP) and their mixture, Fluid Phase Equilib. 408(2016) 240-247. [8] N. Maeda, Nucleation curves of methane-propane mixed gas hydrates in the presence of a stainless steel wall, Fluid Phase Equilib. 413(2016) 142-147. [9] P. Ilani-Kashkouli, A.H. Mohammadi, P. Naidoo, D. Ramjugernath, Hydrate phase equilibria for CO2, CH4, or N2+ tetrabutylphosphonium bromide (TBPB) aqueous solution, Fluid Phase Equilib. 411(2016) 88-92. [10] X.H. Wang, H.B. Qin, A. Dandekar, Y.F. Wang, Y.F. Sun, Q.L. Ma, B. Liu, L.Y. Yang, C.Y. Sun, G.J. Chen, Hydrate phase equilibrium of H2/CH4/CO2 ternary gas mixtures and cage occupancy percentage of hydrogen molecules, Fluid Phase Equilib. 403(2015) 160-166. [11] S.C. Sun, Y. Zhang, Y.Y. Kong, C.L. Liu, Y.F. Liu, Preliminary study on measurement technology for hydrate phase equilibrium, Fluid Phase Equilib. 403(2015) 60-69. [12] Q. Sun, X. Guo, W.G. Chapman, A. Liu, L. Yang, J. Zhang, Vapor-hydrate two-phase and vapor-liquid-hydrate three-phase equilibrium calculation of THF/CH4/N2 hydrates, Fluid Phase Equilib. 401(2015) 70-76. [13] D.-L. Zhong, Z. Li, Y.-Y. Lu, D.-J. Sun, Phase equilibrium data of gas hydrates formed from a CO2+ CH4 gas mixture in the presence of tetrahydrofuran, J. Chem. Eng. Data 59(12) (2014) 4110-4117. [14] A.A. Sizikov, A.Y. Manakov, Double gas hydrate of isopropanol and methane, Fluid Phase Equilib. 371(0) (2014) 75-81. [15] K. Yasuda, Y. Oto, R. Shen, T. Uchida, R. Ohmura, Phase equilibrium condition measurements in nitrogen and air clathrate hydrate forming systems at temperatures below freezing point of water, J. Chem. Thermodyn. 67(2013) 143-147. [16] D.-L. Zhong, Y. Ye, C. Yang, Equilibrium conditions for semiclathrate hydrates formed in the CH4+ N2+ O2+ tetra-n-butyl ammonium bromide systems, J. Chem. Eng. Data 56(6) (2011) 2899-2903. [17] Z.G. Sun, L. Sun, Equilibrium conditions of semi-clathrate hydrate dissociation for methane plus tetra-n-butyl ammonium bromide, J. Chem. Eng. Data 55(9) (2010) 3538-3541. [18] X.-S. Li, Z.-M. Xia, Z.-Y. Chen, K.-F. Yan, G. Li, H.-J. Wu, Equilibrium hydrate formation conditions for the mixtures of CO2+ H2+ tetrabutyl ammonium bromide, J. Chem. Eng. Data 55(6) (2010) 2180-2184. [19] K. Yasuda, R. Ohmura, Phase equilibrium for clathrate hydrates formed with methane, ethane, propane, or carbon dioxide at temperatures below the freezing point of water, J. Chem. Eng. Data 53(9) (2008) 2182-2188. [20] W. Lin, A. Delahaye, L. Fournaison, Phase equilibrium and dissociation enthalpy for semi-clathrate hydrate of CO2 plus TBAB, Fluid Phase Equilib. 264(1-2) (2008) 220-227. [21] M. Wu, S. Wang, H. Liu, A study on inhibitors for the prevention of hydrate formation in gas transmission pipeline, J. Nat. Gas Chem. 16(1) (2007) 81-85. [22] Z. Huo, E. Freer, M. Lamar, B. Sannigrahi, D.M. Knauss, E.D. Sloan, Hydrate plug prevention by anti-agglomeration, Chem. Eng. Sci. 56(17) (2001) 4979-4991. [23] H.B. Qin, C.Y. Sun, Z.F. Sun, B. Liu, G.J. Chen, Relationship between the interfacial tension and inhibition performance of hydrate inhibitors, Chem. Eng. Sci. 148(2016) 182-189. [24] H.B. Qin, Z.F. Sun, X.Q. Wang, J.L. Yang, C.Y. Sun, B. Liu, G.J. Chen, Synthesis and evaluation of two new kinetic hydrate inhibitors, Energy Fuel 29(11) (2015) 7135-7141. [25] N.-J. Kim, J. Hwan Lee, Y.S. Cho, W. Chun, Formation enhancement of methane hydrate for natural gas transport and storage, Energy 35(6) (2010) 2717-2722. [26] Z.G. Sun, R. Wang, R. Ma, K. Guo, S. Fan, Natural gas storage in hydrates with the presence of promoters, Energy Convers. Manag. 44(17) (2003) 2733-2742. [27] Y.F. Makogon, Natural gas hydrates-A promising source of energy, J. Nat. Gas Sci. Eng. 2(1) (2010) 49-59. [28] A. Demirbas, Methane hydrates as potential energy resource:Part 2-Methane production processes from gas hydrates, Energy Convers. Manag. 51(7) (2010) 1562-1571. [29] Y.F. Makogon, S.A. Holditch, T.Y. Makogon, Natural gas-hydrates-A potential energy source for the 21st Century, J. Pet. Sci. Eng. 56(1-3) (2007) 14-31. [30] H. Liu, L. Mu, B. Wang, B. Liu, J. Wang, X. Zhang, C. Sun, J. Chen, M. Jia, G. Chen, Separation of ethylene from refinery dry gas via forming hydrate in w/o dispersion system, Sep. Purif. Technol. 116(2013) 342-350. [31] A. Eslamimanesh, A.H. Mohammadi, D. Richon, P. Naidoo, D. Ramjugernath, Application of gas hydrate formation in separation processes:A review of experimental studies, J. Chem. Thermodyn. 46(2012) 62-71. [32] J.A. Ripmeester, S. Alavi, Some current challenges in clathrate hydrate science:Nucleation, decomposition and the memory effect, Curr. Opin. Solid State Mater. 20(6) (2016) 344-351. [33] J.E.D. Sloan, F. Fleyfel, A molecular mechanism for gas hydrate nucleation from ice, AIChE J. 37(1991) 1281-1292. [34] B. Muller-Bongartz, T.R. Wildeman, R.D. Sloan Jr., A hypothesis for hydrate nucleation phenomena, The Second International Offshore and Polar Engineering Conference, International Society of Offshore and Polar Engineers, San Francisco, USA, January, 1992. [35] R.L. Christiansen, E.D. Sloan, Mechanisms and kinetics of hydrate formation, Ann. N. Y. Acad. Sci. 715(1) (1994) 283-305. [36] Z.M. Aman, C.A. Koh, Interfacial phenomena in gas hydrate systems, Chem. Soc. Rev. 45(6) (2016) 1678-1690. [37] M.R. Walsh, C.A. Koh, E.D. Sloan, A.K. Sum, D.T. Wu, Microsecond simulations of spontaneous methane hydrate nucleation and growth, Science 326(5956) (2009) 1095-1098. [38] K. Lekvam, P. Ruoff, A reaction kinetic mechanism for methane hydrate formation in liquid water, J. Am. Chem. Soc. 115(19) (1993) 8565-8569. [39] J. Long, Gas Hydrate Formation Mechanism and Kinetic Inhibition, PhD Thesis. Colorado School of Mines, 1994. [40] B. Kvamme, A new theory for the kinetics of hydrate formation, Proceedings of the Second International Conference on Natural Gas Hydrates, Toulouse, France June, 1996, pp. 131-146. [41] G.J. Chen, T.M. Guo, A new approach to gas hydrate modelling, Chem. Eng. J. 71(2) (1998) 145-151. [42] G.J. Chen, T.M. Guo, Thermodynamic modeling of hydrate formation based on new concepts, Fluid Phase Equilib. 122(1-2) (1996) 43-65. [43] R. Radhakrishnan, B.L. Trout, A new approach for studying nucleation phenomena using molecular simulations:Application to CO2 hydrate clathrates, J. Chem. Phys. 117(4) (2002) 1786-1796. [44] L.C. Jacobson, W. Hujo, V. Molinero, Amorphous precursors in the nucleation of clathrate hydrates, J. Am. Chem. Soc. 132(33) (2010) 11806-11811. [45] L.C. Jacobson, W. Hujo, V. Molinero, Nucleation pathways of clathrate hydrates:Effect of guest size and solubility, J. Phys. Chem. B 114(43) (2010) 13796-13807. [46] M. Lauricella, S. Meloni, N.J. English, B. Peters, G. Ciccotti, Methane clathrate hydrate nucleation mechanism by advanced molecular simulations, J. Phys. Chem. C 118(40) (2014) 22847-22857. [47] G.J. Guo, M. Li, Y.G. Zhang, C.H. Wu, Why can water cages adsorb aqueous methane? A potential of mean force calculation on hydrate nucleation mechanisms, Phys. Chem. Chem. Phys. 11(44) (2009) 10427-10437. [48] G.J. Guo, Y.G. Zhang, H. Liu, Effect of methane adsorption on the lifetime of a dodecahedral water cluster immersed in liquid water:A molecular dynamics study on the hydrate nucleation mechanisms, J. Phys. Chem. C 111(6) (2007) 2595-2606. [49] D. Kashchiev, Nucleation, Butterworth-Heinemann, 2000. [50] D. Kashchiev, D. Verdoes, G.M. van Rosmalen, Induction time and metastability limit in new phase formation, J. Cryst. Growth 110(3) (1991) 373-380. [51] D. Kashchiev, A. Firoozabadi, Induction time in crystallization of gas hydrates, J. Cryst. Growth 250(3-4) (2003) 499-515. [52] C. Wagner, Kinetik der phasenbildung, Angew. Chem. (1939). https://doi.org/10.1002/ange.19390523006. [53] M. Rahmati-Abkenar, M. Manteghian, H. Pahlavanzadeh, Experimental and theoretical investigation of methane hydrate induction time in the presence of triangular silver nanoparticles, Chem. Eng. Res. Des. 120(2017) 325-332. [54] M. Rahmati-Abkenar, M. Manteghian, H. Pahlavanzadeh, Nucleation of ethane hydrate in water containing silver nanoparticles, Mater. Des. 126(2017) 190-196. [55] S.R. Wang, M.J. Yang, W.G. Liu, J.F. Zhao, Y.C. Song, Investigation on the induction time of methane hydrate formation in porous media under quiescent conditions, J. Pet. Sci. Eng. 145(2016) 565-572. [56] P. Linga, C. Haligva, S.C. Nam, J.A. Ripmeester, P. Englezos, Gas hydrate formation in a variable volume bed of silica sand particles, Energy Fuel 23(11) (2009) 5496-5507. [57] S. Li, S. Fan, J. Wang, X. Lang, D. Liang, CO2 capture from binary mixture via forming hydrate with the help of tetra-n-butyl ammonium bromide, J. Nat. Gas Chem. 18(1) (2009) 15-20. [58] L. Jensen, K. Thomsen, N. von Solms, Propane hydrate nucleation:Experimental investigation and correlation, Chem. Eng. Sci. 63(12) (2008) 3069-3080. [59] P. Skovborg, H.J. Ng, P. Rasmussen, U. Mohn, Measurement of induction times for the formation of methane and ethane gas hydrates, Chem. Eng. Sci. 48(3) (1993) 445-453. [60] S.D. McCallum, D.E. Riestenberg, O.Y. Zatsepina, T.J. Phelps, Effect of pressure vessel size on the formation of gas hydrates, J. Pet. Sci. Eng. 56(1-3) (2007) 54-64. [61] V. Natarajan, P.R. Bishnoi, N. Kalogerakis, Induction phenomena in gas hydrate nucleation, Chem. Eng. Sci. 49(13) (1994) 2075-2087. [62] A. Vysniauskas, P.R. Bishnoi, A kinetic study of methane hydrate formation, Chem. Eng. Sci. 38(7) (1983) 1061-1072. [63] C.J. Benmore, A.K. Soper, Supercooling of aqueous solutions subjected to different thermal treatments, J. Chem. Phys. 108(16) (1998) 6558-6560. [64] A.R. Nerheim, T.M. Svartaas, E.J. Samuelsen, Laser light scattering studies of gas hydrate formation kinetics, The Fourth International Offshore and Polar Engineering Conference, International Society of Offshore and Polar Engineers, January, 1994. [65] R.M. Nerheim, Investigation of Gas Hydrate Formation Kinetics by Laser Lightscattering, PhD Thesis. The Norwegian Institute of Technology, 1993. [66] M.H. Yousif, R.B. Dorshow, D.B. Young, Testing of hydrate kinetic inhibitors using laser light scattering technique, Ann. N. Y. Acad. Sci. 715(1) (1994) 330-340. [67] C.Y. Sun, G.J. Chen, G.L. Yue, The induction period of hydrate formation in a flow system, Chin. J. Chem. Eng. 12(4) (2004) 527-531. [68] S. Sun, X. Peng, Y. Zhang, J. Zhao, Y. Kong, Stochastic nature of nucleation and growth kinetics of THF hydrate, J. Chem. Thermodyn. 107(2017) 141-152. [69] P.W. Wilson, A.D.J. Haymet, Hydrate formation and re-formation in nucleating THF/water mixtures show no evidence to support a "memory" effect, Chem. Eng. J. 161(1-2) (2010) 146-150. [70] R. Ohmura, M. Ogawa, K. Yasuoka, Y.H. Mori, Statistical study of clathrate-hydrate nucleation in a water/hydrochlorofluorocarbon system:Search for the nature of the "memory effect", J. Phys. Chem. B 107(22) (2003) 5289-5293. [71] J.S. Parent, P.R. Bishnoi, Investigations into the nucleation behaviour of methane gas hydrates, Chem. Eng. Commun. 144(1) (1996) 51-64. [72] B. Cingotti, A. Sinquin, J.P. Durand, T. Palermo, Study of methane hydrate inhibition mechanisms using copolymers, Ann. N. Y. Acad. Sci. 912(1) (2000) 766-776. [73] P. Servio, P. Englezos, Morphology of methane and carbon dioxide hydrates formed from water droplets, AIChE J. 49(1) (2003) 269-276. [74] J. Dong Lee, R. Susilo, P. Englezos, Methane-ethane and methane-propane hydrate formation and decomposition on water droplets, Chem. Eng. Sci. 60(15) (2005) 4203-4212. [75] R.M. Barrer, A.V.J. Edge, Gas hydrates containing argon, krypton and xenon:Kinetics and energetics of formation and equilibria, Proceedings of the Royal Society of London A:Mathematical, Physical and Engineering Sciences, The Royal Society 1967, pp. 1-24. [76] B.J. Falabella, A Study of Natural Gas Hydrates, PhD Thesis. University of Massachusetts, 1975. [77] P. Linga, R.N. Kumar, P. Englezos, Gas hydrate formation from hydrogen/carbon dioxide and nitrogen/carbon dioxide gas mixtures, Chem. Eng. Sci. 62(16) (2007) 4268-4276. [78] V.V.T. Feklistov, Investigation of Kinetics of Gas Hydrate Formation by Turbidimetry Method, PhD Thesis. Institute of Inorganic Chemistry, Novosibirsk, 2001. [79] W. Ke, T.M. Svartaas, J.T. Kvaloy, B.R. Kosberg, Inhibition-promotion:Dual effects of polyvinylpyrrolidone (PVP) on structure-II hydrate nucleation, Energy Fuel 30(9) (2016) 7646-7655. [80] H.K. Abay, T.M. Svartaas, Effect of ultralow concentration of methanol on methane hydrate formation, Energy Fuel 24(2) (2010) 752-757. [81] D. Posteraro, J. Ivall, M. Maric, P. Servio, New insights into the effect of polyvinylpyrrolidone (PVP) concentration on methane hydrate growth. 2. Liquid phase methane mole fraction, Chem. Eng. Sci. 126(2015) 91-98. [82] H. Sharifi, J. Ripmeester, V.K. Walker, P. Englezos, Kinetic inhibition of natural gas hydrates in saline solutions and heptane, Fuel 117(2014) 109-117. [83] Y.V. Rojas González, Tetrahydrofuran and Natural Gas Hydrates Formation in the Presence of Various Inhibitors, PhD Thesis. Curtin University of Technology, 2011. [84] M.R. Talaghat, Intensification of the performance of kinetic inhibitors in the presence of polyethylene oxide and polypropylene oxide for simple gas hydrate formation in a flow mini-loop apparatus, Fluid Phase Equilib. 289(2) (2010) 129-134. [85] L. Del Villano, M.A. Kelland, G.M. Miyake, E.Y.X. Chen, Effect of polymer tacticity on the performance of poly(N,N-dialkylacrylamide)s as kinetic hydrate inhibitors, Energy Fuel 24(4) (2010) 2554-2562. [86] M. Varma-Nair, C.A. Costello, K.S. Colle, H.E. King, Thermal analysis of polymer-water interactions and their relation to gas hydrate inhibition, J. Appl. Polym. Sci. 103(4) (2007) 2642-2653. [87] B. Kvamme, T. Kuznetsova, K. Aasoldsen, Molecular dynamics simulations for selection of kinetic hydrate inhibitors, J. Mol. Graph. Model. 23(6) (2005) 524-536. [88] B.J. Anderson, J.W. Tester, G.P. Borghi, B.L. Trout, Properties of inhibitors of methane hydrate formation via molecular dynamics simulations, J. Am. Chem. Soc. 127(50) (2005) 17852-17862. [89] Y. Salamat, A. Moghadassi, M. Illbeigi, E. Ali, A.H. Mohammadi, Experimental study of hydrogen sulfide hydrate formation:Induction time in the presence and absence of kinetic inhibitor, J. Energy Chem. 22(1) (2013) 114-118. [90] A. Perrin, O.M. Musa, J.W. Steed, The chemistry of low dosage clathrate hydrate inhibitors, Chem. Soc. Rev. 42(5) (2013) 1996-2015. [91] J.M. Herri, F. Gruy, J.S. Pic, M. Cournil, B. Cingotti, A. Sinquin, Interest of in situ turbidimetry for the characterization of methane hydrate crystallization:Application to the study of kinetic inhibitors, Chem. Eng. Sci. 54(12) (1999) 1849-1858. [92] S. Douïeb, S. Archambault, L. Fradette, F. Bertrand, B. Haut, Effect of the fluid shear rate on the induction time of CO2-THF hydrate formation, Can. J. Chem. Eng. 95(1) (2017) 187-198. [93] N. Maeda, Nucleation curves of methane-propane mixed gas hydrates in hydrocarbon oil, Chem. Eng. Sci. 155(2016) 1-9. [94] Y. Liu, K. Guo, D. Liang, S. Fan, Refrigerant gas hydrate growth under influence of magnetic field, Sci. China Ser. B 33(1) (2003) 89-96. [95] Y.T. Seo, I.L. Moudrakovski, J.A. Ripmeester, J.W. Lee, H. Lee, Efficient recovery of CO2 from flue gas by clathrate hydrate formation in porous silica gels, Environ. Sci. Technol. 39(7) (2005) 2315-2319. [96] A. Adeyemo, R. Kumar, P. Linga, J. Ripmeester, P. Englezos, Capture of carbon dioxide from flue or fuel gas mixtures by clathrate crystallization in a silica gel column, Int. J. Greenhouse Gas Control 4(3) (2010) 478-485. [97] X.F. Sun, K.K. Mohanty, Kinetic simulation of methane hydrate formation and dissociation in porous media, Chem. Eng. Sci. 61(11) (2006) 3476-3495. [98] P. Linga, N. Daraboina, J.A. Ripmeester, P. Englezos, Enhanced rate of gas hydrate formation in a fixed bed column filled with sand compared to a stirred vessel, Chem. Eng. Sci. 68(1) (2012) 617-623. [99] S.A. Bagherzadeh, I.L. Moudrakovski, J.A. Ripmeester, P. Englezos, Magnetic resonance imaging of gas hydrate formation in a bed of silica sand particles, Energy Fuel 25(7) (2011) 3083-3092. [100] W.G. Liu, S.R. Wang, M.J. Yang, Y.C. Song, S.L. Wang, J.F. Zhao, Investigation of the induction time for THF hydrate formation in porous media, J. Nat. Gas Sci. Eng. 24(2015) 357-364. [101] H.B. Roozeboom, Sur l'hydrate de l'acide sulfureux, Recl. Trav. Chim. Pays-Bas 3(2) (1884) 29-72. [102] R.R. Gilpin, A study of factors affecting the ice nucleation temperature in a domestic water supply, Can. J. Chem. Eng. 56(4) (1978) 466-471. [103] I.U.F. Makogon, Hydrates of Natural Gas, PennWell Books, Tulsa, Oklahoma, 1981. [104] I.L. Moudrakovski, A.A. Sanchez, C.I. Ratcliffe, J.A. Ripmeester, Nucleation and growth of hydrates on ice surfaces:New insights from 129Xe NMR experiments with hyperpolarized xenon, J. Phys. Chem. B 105(49) (2001) 12338-12347. [105] C. Giavarini, F. Maccioni, M.L. Santarelli, Formation kinetics of propane hydrates, Ind. Eng. Chem. Res. 42(7) (2003) 1517-1521. [106] J. Zhao, C. Wang, M. Yang, W. Liu, K. Xu, Y. Liu, Y. Song, Existence of a memory effect between hydrates with different structures (I, II, and H), J. Nat. Gas Sci. Eng. 26(2015) 330-335. [107] D.D. Link, E.P. Ladner, H.A. Elsen, C.E. Taylor, Formation and dissociation studies for optimizing the uptake of methane by methane hydrates, Fluid Phase Equilib. 211(1) (2003) 1-10. [108] B.Y. Zhang, Q. Wu, X. Gao, C.L. Liu, Y.G. Ye, Memory effect on hydrate formation and influential factors of its sustainability in new hydrate-based coal mine methane separation method, Int. J. Environ. Pollut. 53(3-4) (2013) 201-212. [109] O.Y. Zatsepina, D. Riestenberg, S.D. McCallum, M. Gborigi, C. Brandt, B.A. Buffett, T.J. Phelps, Influence of water thermal history and overpressure on CO2-hydrate nucleation and morphology, Am. Mineral. 89(8-9) (2004) 1254-1259. [110] H. Sefidroodi, E. Abrahamsen, M.A. Kelland, Investigation into the strength and source of the memory effect for cyclopentane hydrate, Chem. Eng. Sci. 87(2013) 133-140. [111] M.L. Martinez de Baños, O. Carrier, P. Bouriat, D. Broseta, Droplet-based millifluidics as a new tool to investigate hydrate crystallization:Insights into the memory effect, Chem. Eng. Sci. 123(2015) 564-572. [112] B. Sowa, N. Maeda, Statistical study of the memory effect in model natural gas hydrate systems, J. Phys. Chem. A 119(44) (2015) 10784-10790. [113] H. Zeng, L.D. Wilson, V.K. Walker, J.A. Ripmeester, Effect of antifreeze proteins on the nucleation, growth, and the memory effect during tetrahydrofuran clathrate hydrate formation, J. Am. Chem. Soc. 128(9) (2006) 2844-2850. [114] J.D. Lee, P. Englezos, Unusual kinetic inhibitor effects on gas hydrate formation, Chem. Eng. Sci. 61(5) (2006) 1368-1376. [115] J.D. Lee, P. Englezos, Enhancement of the performance of gas hydrate kinetic inhibitors with polyethylene oxide, Chem. Eng. Sci. 60(19) (2005) 5323-5330. [116] E.F. May, R. Wu, M.A. Kelland, Z.M. Aman, K.A. Kozielski, P.G. Hartley, N. Maeda, Quantitative kinetic inhibitor comparisons and memory effect measurements from hydrate formation probability distributions, Chem. Eng. Sci. 107(2014) 1-12. [117] S. Takeya, A. Hori, T. Hondoh, T. Uchida, Freezing-memory effect of water on nucleation of CO2 hydrate crystals, J. Phys. Chem. B 104(17) (2000) 4164-4168. [118] E.D. Sloan, S. Subramanian, P.N. Matthews, J.P. Lederhos, A.A. Khokhar, Quantifying hydrate formation and kinetic inhibition, Ind. Eng. Chem. Res. 37(8) (1998) 3124-3132. [119] P.M. Rodger, Melting and memory, Gas Hydrates:Challenges for the Future, Annals of the New York Academy of Sciences, 912(1), 2000, pp. 474-482. [120] S. Gao, W. House, W.G. Chapman, NMR/MRI study of clathrate hydrate mechanisms, J. Phys. Chem. B 109(41) (2005) 19090-19093. [121] M. Oshima, W. Shimada, S. Hashimoto, A. Tani, K. Ohgaki, Memory effect on semiclathrate hydrate formation:A case study of tetragonal tetra-n-butyl ammonium bromide hydrate, Chem. Eng. Sci. 65(20) (2010) 5442-5446. [122] P. Buchanan, A.K. Soper, H. Thompson, R.E. Westacott, J.L. Creek, G. Hobson, C.A. Koh, Search for memory effects in methane hydrate:Structure of water before hydrate formation and after hydrate decomposition, J. Chem. Phys. 123(16) (2005) 164507. [123] J. Vatamanu, P.G. Kusalik, Observation of two-step nucleation in methane hydrates, Phys. Chem. Chem. Phys. 12(45) (2010) 15065-15072. [124] S.A. Bagherzadeh, S. Alavi, J. Ripmeester, P. Englezos, Formation of methane nanobubbles during hydrate decomposition and their effect on hydrate growth, J. Chem. Phys. 142(21) (2015), 214701. [125] S.A. Bagherzadeh, S. Alavi, J.A. Ripmeester, P. Englezos, Evolution of methane during gas hydrate dissociation, Fluid Phase Equilib. 358(0) (2013) 114-120. [126] M. Matsumoto, Y. Wada, A. Oonaka, K. Onoe, Polymorph control of glycine by antisolvent crystallization using nitrogen minute-bubbles, J. Cryst. Growth 373(2013) 73-77. [127] B.C. Knott, J.L. LaRue, A.M. Wodtke, M.F. Doherty, B. Peters, Communication:Bubbles, crystals, and laser-induced nucleation, J. Chem. Phys. 134(17) (2011), 171102. [128] T. Uchida, K. Yamazaki, K. Gohara, Gas nanobubbles as nucleation acceleration in the gas-hydrate memory effect, J. Phys. Chem. C 120(47) (2016) 26620-26629. [129] T. Uchida, K. Yamazaki, K. Gohara, Generation of micro- and nano-bubbles in water by dissociation of gas hydrates, Korean J. Chem. Eng. 33(5) (2016) 1749-1755. [130] H. Zeng, I.L. Moudrakovski, J.A. Ripmeester, V.K. Walker, Effect of antifreeze protein on nucleation, growth and memory of gas hydrates, AIChE J. 52(9) (2006) 3304-3309. |
[1] | Wensheng Li, Liangyuan Qi, Daolin Ye, Wei Cai, Weiyi Xing. Facile modification of aluminum hypophosphate and its flame retardancy for polystyrene [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 90-98. |
[2] | Ming Liu, Ying Li, Rui Wang, Guoqiang Shao, Pengpeng Lv, Jun Li, Qingshan Zhu. Uniform deposition of ultra-thin TiO2 film on mica substrate by atmospheric pressure chemical vapor deposition: Effect of precursor concentration [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 99-107. |
[3] | Hui Jiang, Zijian Zhao, Ning Yu, Yi Qin, Zhengwei Luo, Wenhua Geng, Jianliang Zhu. Synthesis, characterization, and performance comparison of boron using adsorbents based on N-methyl-D-glucosamine [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 16-31. |
[4] | Chaobo Zhang, Xiaoyong Yang, Jian Dai, Wenxia Liu, Hang Yang, Zhishan Bai. Efficient extraction of phenol from wastewater by ionic micro-emulsion method: Anionic and cationic [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 137-145. |
[5] | Jianhui Zhou, Xin Lai, Jianfeng Hu, Haijie Qi, Shan Liu, Zhengguo Zhang. Design of a graphene oxide@melamine foam/polyaniline@erythritol composite phase change material for thermal energy storage [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 282-290. |
[6] | Sanya Du, Xiaomin Han, Wenjiu Cai, Jinlong Zhu, Xiaobai Ma, Songbai Han, Dongfeng Chen, Yusheng Zhao, Hui Li, Hailong Lu, Xiaohui Yu. Formation of the structure-II gas hydrate from low-concentration propane mixed with methane [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 306-314. |
[7] | Bin Lin, Wenyao Chen, Nan Song, Zhihua Zhang, Qianhong Wang, Wei Du, Xinggui Zhou, Xuezhi Duan. Mechanistic insights into propylene oxidation to acrolein over gold catalysts [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 39-49. |
[8] | Yaqiao Liu, Shuozhen Hu, Xinsheng Zhang, Shigang Sun. Investigation of photoelectrocatalytic degradation mechanism of methylene blue by α-Fe2O3 nanorods array [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 162-172. |
[9] | Shanshan Mao, Tao Shen, Qing Zhao, Tong Han, Fan Ding, Xin Jin, Manglai Gao. Selective capture of silver ions from aqueous solution by series of azole derivatives-functionalized silica nanosheets [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 319-328. |
[10] | Shanwei Xiong, Li Zhou, Yiyang Dai, Xu Ji. Attention-based long short-term memory fully convolutional network for chemical process fault diagnosis [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 1-14. |
[11] | Junao Zhu, Zhirong Yang, Yuanhan Chen, Mingming Chen, Zhen Liu, Yueqiang Cao, Jing Zhang, Gang Qian, Xinggui Zhou, Xuezhi Duan. Mechanistic insights into the active intermediates of 2,6-diaminopyridine dinitration [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 160-168. |
[12] | Tinghao Jia, Yunbo Yu, Qing Liu, Yao Yang, Ji-Jun Zou, Xiangwen Zhang, Lun Pan. Theoretical and experimental study on the inhibition of jet fuel oxidation by diarylamine [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 225-232. |
[13] | Tatyana P. Adamova, Sergey S. Skiba, Andrey Yu. Manakov, Sergey Y. Misyura. Growth rate of CO2 hydrate film on water–oil and water–gaseous CO2 interface [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 266-272. |
[14] | Jiaxin Wu, Chenxiao Wang, Xianliang Meng, Haichen Liu, Ruizhi Chu, Guoguang Wu, Weisong Li, Xiaofeng Jiang, Deguang Yang. Enhancement of catalytic and anti-carbon deposition performance of SAPO-34/ZSM-5/quartz films in MTA reaction by Si/Al ratio regulation [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 314-324. |
[15] | Qiongna Xiao, Yuyan Jiang, Weiqiang Yuan, Jingjing Chen, Haohong Li, Huidong Zheng. Styrene epoxidation catalyzed by polyoxometalate/quaternary ammonium phase transfer catalysts: The effect of cation size and catalyst deactivation mechanism [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 192-201. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||