[1] U.S. Energy Information Administration, EIA-International Energy Outlook 2017, Int Energy Outlook 2017, (2017) 76. [2] A. Dutta, I.A. Karimi, S. Farooq, Economic feasibility of power generation by recovering cold energy during LNG (liquefied natural gas) regasification, ACS Sustain. Chem. Eng. 6(2018) 10687-10695. [3] I.A. Karimi, M.S. Khan, Special issue on PSE advances in natural gas value chain:Editorial, Ind. Eng. Chem. Res. 57(2018) 5733-5735. [4] B.B. Kanbur, L. Xiang, S. Dubey, F.H. Choo, F. Duan, Cold utilization systems of LNG:a review, Renew. Sustain. Energy Rev. 79(2017) 1171-1188. [5] Y. Li, H. Chen, Y. Ding, Fundamentals and applications of cryogen as a thermal energy carrier:a critical assessment, Int. J. Therm. Sci. 49(2010) 941-949. [6] H. Chen, T.N. Cong, W. Yang, C. Tan, Y. Li, Y. Ding, Progress in electrical energy storage system:a critical review, Prog. Nat. Sci. 19(2009) 291-312. [7] R. Morgan, S. Nelmes, E. Gibson, G. Brett, Liquid air energy storage-analysis and first results from a pilot scale demonstration plant, Appl. Energy 137(2015) 845-853. [8] G. Brett, M. Barnett, Utility-scale energy storage:Liquid air a pioneering solution to the problem of energy storage, IET Semin. Dig. 2013(2013) 1-18. [9] X. She, Y. Li, X. Peng, Y. Ding, Theoretical analysis on performance enhancement of stand-alone liquid air energy storage from perspective of energy storage and heat transfer, Energy Procedia 142(2017) 3498-3504. [10] X. Peng, X. She, C. Li, Y. Luo, T. Zhang, Y. Li, Y.L. Ding, Liquid air energy storage flexibly coupled with LNG regasification for improving air liquefaction, Appl. Energy 250(2019) 1190-1201. [11] J. Park, F. You, H. Cho, I. Lee, I. Moon, Novel massive thermal energy storage system for liquefied natural gas cold energy recovery, Energy 195(2020) 117022. [12] J. Park, I. Lee, H. Yoon, J. Kim, I. Moon, Application of cryogenic energy storage to liquefied natural gas regasification power plant, Comput. Aided Chem. Eng. 40(2017) 2557-2562. [13] J. Park, I. Lee, I. Moon, A novel design of liquefied natural gas (LNG) regasification power plant integrated with cryogenic energy storage system, Ind. Eng. Chem. Res. 56(2017) 1288-1296. [14] J. Park, S. Cho, M. Qi, W. Noh, I. Lee, I. Moon, Liquid air energy storage coupled with liquefied natural gas cold energy:focus on efficiency, energy capacity, and flexibility, Energy (2020) 119308. [15] T. Zhang, L. Chen, X. Zhang, S. Mei, X. Xue, Y. Zhou, Thermodynamic analysis of a novel hybrid liquid air energy storage system based on the utilization of LNG cold energy, Energy 155(2018) 641-650. [16] L.Y. li, S.X. Wang, Z. Deng, L.W. Yang, Y. Zhou, J.J. Wang,, Performance analysis of liquid air energy storage utilizing LNG cold energy, IOP Conf. Ser. Mater. Sci. Eng. (2017) 012032. [17] J. Kim, Y. Noh, D. Chang, Storage system for distributed-energy generation using liquid air combined with liquefied natural gas, Appl. Energy 212(2018) 1417-1432. [18] S. Hamdy, T. Morosuk, G. Tsatsaronis, Exergetic and economic assessment of integrated cryogenic energy storage systems, Cryogenics (Guildf) 99(2019) 39-50. [19] I. Lee, J. Park, I. Moon, Conceptual design and exergy analysis of combined cryogenic energy storage and LNG regasification processes:cold and power integration, Energy 140(2017) 106-115. [20] I. Lee, F. You, Systems design and analysis of liquid air energy storage from liquefied natural gas cold energy, Appl. Energy 242(2019) 168-180. [21] I. Lee, J. Park, F. You, I. Moon, A novel cryogenic energy storage system with LNG direct expansion regasification:design, energy optimization, and exergy analysis, Energy 173(2019) 691-705. [22] X. She, T. Zhang, L. Cong, X. Peng, C. Li, Y. Luo, Y.L. Ding, Flexible integration of liquid air energy storage with liquefied natural gas regasification for power generation enhancement, Appl. Energy 251(2019) 113355. [23] X. She, X. Peng, B. Nie, G. Leng, X. Zhang, L. Weng, L.G. Tong, L.F. Zheng, L. Wang, Y.L. Ding,, Enhancement of round trip efficiency of liquid air energy storage through effective utilization of heat of compression, Appl. Energy 206(2017) 1632-1642. [24] X. Peng, X. She, L. Cong, T. Zhang, C. Li, Y. Li, L. Wang, L.G. Tong, Y.L. Ding,, Thermodynamic study on the effect of cold and heat recovery on performance of liquid air energy storage, Appl. Energy 221(2018) 86-99. [25] X. She, T. Zhang, X. Peng, L. Wang, L. Tong, Y. Luo, X.S. Zhang, Y.L. Ding,, Liquid air energy storage for decentralized micro energy networks with combined cooling, heating, not water and power supply, J. Therm. Sci. 29(2020) 1-17. [26] D. Marmolejo-Correa, T. Gundersen, A comparison of exergy efficiency definitions with focus on low temperature processes, Energy 44(2012) 477-489. [27] T.J. Kotas, Exergy criteria of performance for thermal plant, Int. J. Heat Fluid Flow 12(1980) 147-163. [28] J. Bao, Y. Lin, R. Zhang, N. Zhang, G. He, Strengthening power generation efficiency utilizing liquefied natural gas cold energy by a novel two-stage condensation Rankine cycle (TCRC) system, Energy Convers. Manage. 143(2017) 312-325. [29] C. Li, J. Liu, S. Zheng, X. Chen, J. Li, Z. Zeng, Performance analysis of an improved power generation system utilizing the cold energy of LNG and solar energy, Appl. Therm. Eng. 159(2019) 113937. [30] E.L. Tsougranis, D. Wu, A feasibility study of organic rankine cycle (ORC) power generation using thermal and cryogenic waste energy on board an LNG passenger vessel, Int. J. Energy Res. 42(2018) 3121-3142. [31] M. Aneke, B. Agnew, C. Underwood, Performance analysis of the chena binary geothermal power plant, Appl. Therm. Eng. 31(2011) 1825-1832. [32] Process Industry Practices, Compressor Selection Guidelines, 2013. [33] S. Mirmasoumi, R. Khoshbakhti Saray, S. Ebrahimi, Evaluation of thermal pretreatment and digestion temperature rise in a biogas fueled combined cooling, heat, and power system using exergo-economic analysis, Energy Convers. Manage. 163(2018) 219-238. [34] J.J.J. Chen, Comments on improvements on a replacement for the logarithmic mean, Chem. Eng. Sci. 42(1987) 2488-2489. [35] C. Xie, Y. Hong, Y. Ding, Y. Li, J. Radcliffe, An economic feasibility assessment of decoupled energy storage in the UK:With liquid air energy storage as a case study, Appl. Energy 225(2018) 244-257. |