Chinese Journal of Chemical Engineering ›› 2021, Vol. 36 ›› Issue (8): 190-198.DOI: 10.1016/j.cjche.2020.10.007
Previous Articles Next Articles
Xin Pan, Jingjing Ma, Xiude Hu, Qingjie Guo
Received:
2020-08-04
Revised:
2020-10-09
Online:
2021-09-30
Published:
2021-08-28
Contact:
Xiude Hu, Qingjie Guo
Supported by:
Xin Pan, Jingjing Ma, Xiude Hu, Qingjie Guo
通讯作者:
Xiude Hu, Qingjie Guo
基金资助:
Xin Pan, Jingjing Ma, Xiude Hu, Qingjie Guo. Energy and economic analysis of a hydrogen and ammonia co-generation system based on double chemical looping[J]. Chinese Journal of Chemical Engineering, 2021, 36(8): 190-198.
Xin Pan, Jingjing Ma, Xiude Hu, Qingjie Guo. Energy and economic analysis of a hydrogen and ammonia co-generation system based on double chemical looping[J]. 中国化学工程学报, 2021, 36(8): 190-198.
[1] B. Su, X.J. Gao, C.D. Xiao, Interpretation of IPCC SR1.5 on cryosphere change and its impacts, Adv. Clim. Chang. Res. 15(14) (2019) 395-404. [2] Y. Kalinci, A. Hepbasli, I. Dincer, Biomass-based hydrogen production:A review and analysis, Int. J. Hydrogen Energ. 34(21) (2009) 8799-8817. [3] R. Saidur, E.A. Abdelaziz, A. Demirbas, M.S. Hossain, S. Mekhilef, A review on biomass as a fuel for boilers, Renew. Sust. Energ. Rev. 15(5) (2011) 2262-2289. [4] B. Moghtaderi, Review of the recent chemical looping process developments for novel energy and fuel applications, Energ. Fuel. 26(1) (2012) 15-40. [5] J. Adanez, A. Abad, T. Mendiara, P. Gayan, L.F. de Diego, F. Garcia-Labiano, Chemical looping combustion of solid fuels, Prog. Energ. Combust. 65(2018) 6-66. [6] J. Adanez, A. Abad, F. Garcia-Labiano, P. Gayan, L.F. de Diego, Progress in chemical-looping combustion and reforming technologies, Prog. Energ. Combust. 38(2) (2012) 215-282. [7] Q.J. Guo, X.D. Hu, Y.Z. Liu, W.H. Jia, M.M. Yang, M. Wu, H.J. Tian, H.J. Ryu, Coal chemical-looping gasification of Ca-based oxygen carriers decorated by CaO, Powder Technol. 275(2015) 60-68. [8] J. Strohle, M. Orth, B. Epple, Design and operation of a 1 MWth chemical looping plant, Appl. Energ. 113(2014) 1490-1495. [9] T.B. Vilches, H. Thunman, Experimental investigation of volatiles-bed contact in a 2-4 MWth bubbling bed reactor of a dual fluidized bed gasifier, Energ. Fuel. 29(10) (2015) 6456-6464. [10] J.S. Zhang, Simulation study on 10MWth coal based chemical looping gasification process, M.Eng. Thesis, Qingdao University of Science and Technology, Qingdao, China, 2012. [11] S.G. Nadgouda, M.Q. Guo, A. Tong, L.S. Fan, High purity syngas and hydrogen coproduction using copper-iron oxygen carriers in chemical looping reforming process, Appl. Energ. 235(2019) 1415-1426. [12] K. Wang, Q.B. Yu, Q. Qin, W.J. Duan, Thermodynamic modeling of the combined CLG-CLHG system for syngas and hydrogen generation, Environ. Prog. Sustain. 37(3) (2018) 1132-1139. [13] H.J. Ge, H.F. Zhang, W.J. Guo, T. Song, L.H. Shen, System simulation and experimental verification:biomass-based integrated gasification combined cycle (BIGCC) coupling with chemical looping gasification (CLG) for power generation, Fuel 241(2019) 118-128. [14] A.T. Wijayanta, M. Aziz, Ammonia production from algae via integrated hydrothermal gasification, chemical looping, N2 production, and NH3 synthesis, Energy 174(2019) 331-338. [15] M. Aziz, I.N. Zaini, T. Oda, A. Morihara, T. Kashiwagi, Energy conservative brown coal conversion to hydrogen and power based on enhanced process integration:Integrated drying, coal direct chemical looping, combined cycle and hydrogenation, Int. J. Hydrogen Energ. 42(5) (2017) 2904-2913. [16] Z. Yu, Y. Yang, S. Yang, Q. Zhang, J. Zhao, Y. Fang, X.G. Hao, G.Q. Guan, Ironbased oxygen carriers in chemical looping conversions:A review, Carbon Resources Conversion 2(1) (2019) 23-34. [17] F.X. Li, H.R. Kim, D. Sridhar, F. Wang, L. Zeng, J. Chen, L.S. Fan, Syngas chemical looping gasification process:Oxygen carrier particle selection and performance, Energ. Fuel 23(8) (2009) 4182-4189. [18] T. Mendiara, L.F. de Diego, F. García-Labiano, P. Gayan, A. Abad, J. Adanez, On the use of a highly reactive iron ore in chemical looping combustion of different coals, Fuel 126(2014) 239-249. [19] A. Petros, P.R. Davidson, G. Skodras, 6th International Conference on Clean Coal Technologies CCT2013, Appl. Therm. Eng. 74(2015) 1-210. [20] R. Perez-Vega, I. Adanez-Rubio, P. Gayan, M.T. Izquierdo, A. Abad, F. GarcíaLabiano, L.F. de Diego, J. Adanez, Sulphur, nitrogen and mercury emissions from coal combustion with CO2 capture in chemical looping with oxygen uncoupling (CLOU), Int. J. Greenh. Gas. Con. 46(2016) 28-38. [21] M. Abian, A. Abad, M.T. Izquierdo, P. Gayan, L.F. de Diego, F. García-Labiano, J. Adanez, Titanium substituted manganese-ferrite as an oxygen carrier with permanent magnetic properties for chemical looping combustion of solid fuels, Fuel 195(2017) 38-48. [22] J. Fan, L. Zhu, H. Hong, Q. Jiang, H. Jin, A thermodynamic and environmental performance of in-situ gasification of chemical looping combustion for power generation using ilmenite with different coals and comparison with other coal-driven power technologies for CO2 capture, Energy 119(2017) 1171-1180. [23] A. Edrisi, Z. Mansoori, B. Dabir, A. Shahnazari, Hydrogen, nitrogen and carbon dioxide production through chemical looping using iron-based oxygen carriera Green plant for H2 and N2 production, Int. J. Hydrogen Energ. 39(20) (2014) 10380-10391. [24] Y.L. Kuo, W.C. Huang, W.M. Hsu, Y.H. Tseng, Y. Ku, Use of spinel nickel aluminium ferrite as self-supported oxygen carrier for chemical looping hydrogen generation process, Aerosol Air Qual. Res. 15(7) (2015) 2700-2708. [25] T. Liu, S. Hu, Z. Yu, J. Huang, J. Li, Z. Wang, Y. Fang, Research of coal-direct chemical looping hydrogen generation with iron-based oxygen carrier modified by potassium, Int. J. Hydrogen Energ. 42(16) (2017) 11038-11046. [26] A. Tong, D. Sridhar, Z.C. Sun, H.R. Kim, L. Zeng, F. Wang, D.W. Wang, M.V. Kathe, S.W. Luo, Y.H. Sun, L.S. Fan, Continuous high purity hydrogen generation from a syngas chemical looping 25kW(th) sub-pilot unit with 100% carbon capture, Fuel 103(2013) 495-505. [27] L.L. Wang, L.H. Shen, W.D. Liu, S.X. Jiang, Chemical looping hydrogen generation using synthesized hematite-based oxygen carrier comodified by potassium and copper, Energ. Fuel. 31(8) (2017) 8423-8433. [28] X. Zhang, H. Jin, Thermodynamic analysis of chemical-looping hydrogen generation, Appl. Energ. 112(2013) 800-807. [29] M.N. Khan, T. Shamim, Investigation of hydrogen generation in a three reactor chemical looping reforming process, Appl. Energ. 162(2016) 1186-1194. [30] H.Z. Liu, Synthetic ammonia industry:past, present and future-review, enlightenment and challenges of the 100th anniversary of the establishment of synthetic ammonia industry, Chem. Ind. & Eng. Pro. (China) 32(9) (2013) 1995-2005. [31] D. Xiang, Y. Zhou, Concept design and techno-economic performance of hydrogen and ammonia co-generation by coke-oven gas-pressure swing adsorption integrated with chemical looping hydrogen process, Appl. Energ. 229(2018) 1024-1034. [32] M. Ishida, H. Jin, A novel chemical-looping combustor without NOx formation, Ind. Eng. Chem. Res. 35(7) (1996) 2469-2472. [33] A. Edrisi, Z. Mansoori, B. Dabir, Using three chemical looping reactors in ammonia production process-A novel plant configuration for a green production, Int. J. Hydrogen Energ. 39(16) (2014) 8271-8282. [34] A.-M. Cormos, C.-C. Cormos, Investigation of hydrogen and power cogeneration based on direct coal chemical looping systems, Int. J. Hydrogen Energ. 39(5) (2014) 2067-2077. [35] Y.D. He, L. Zhu, L.L. Li, L. Sun, Zero-energy penalty carbon capture and utilization for liquid fuel and power cogeneration with chemical looping combustion, J. Clean. Prod. 235(2019) 34-43. [36] D. Xiang, W.Q. Huang, M.D. Cai, Y. Cao, P. Li, R.W. Shu, Process modeling, simulation, and technical analysis of coke-oven gas solid oxide fuel cell integrated with anode off-gas recirculation and CLC for power generation, Energ. Convers. Manage. 190(2019) 34-41. [37] C.D. Demirhan, W.W. Tso, J.B. Powell, E.N. Pistikopoulos, Sustainable ammonia production through process synthesis and global optimization, AIChE J. 65(7) (2019) e16498. [38] Darmawan A., Ajiwibowo M.W., Tokimatsu K., Aziz M., Efficient co-production of power and ammonia from black liquor, Int. J. Hydrogen Energ. 45(59) (2020) 34437-34448. [39] C.H. Liu, Analysis of coal market supply and demand in the first half of 2019 and prediction of trend in the second half of 2019, J. Commercial Econ. 21(2019) 185-186. [40] A. Cuadrat, A. Abad, J. Adanez, L.F. de Diego, F. García-Labiano, P. Gayan, Behavior of ilmenite as oxygen carrier in Chemical-looping combustion, Fuel Process. Technol. 94(1) (2012) 101-112. [41] L. Zhu, Y.D. He, L.L. Li, P.B. Wu, Tech-economic assessment of secondgeneration CCS:Chemical looping combustion, Energy 144(2018) 915-927. [42] A.E. Farooqui, A. Bose, D. Ferrero, J. Llorca, M. Santarelli, Simulation of two-step redox recycling of non-stoichiometric ceria with thermochemical dissociation of CO2/H2O in moving bed reactors-Part II:Techno-economic analysis and integration with 100MW oxyfuel power plant with carbon capture, Chem. Eng. Sci. 205(2019) 358-373. [43] R.C. Baliban, J.A. Elia, C.A. Floudas, Toward novel hybrid biomass, coal, and natural gas processes for satisfying current transportation fuel demands, 1:Process alternatives, gasification modeling, process simulation, and economic analysis, Ind. Eng. Chem. Res. 49(16) (2010) 7343-7370. [44] P. Jiang, A.S. Berrouk, S. Dara, Biomass gasification integrated with chemical looping system for hydrogen and power coproduction processthermodynamic and techno-economic assessment, Chem. Eng. Technol. 42(5) (2019) 1153-1168. [45] A.K. Olaleye, M.H. Wang, Techno-economic analysis of chemical looping combustion with humid air turbine power cycle, Fuel 124(2014) 221-231. [46] S. Roussanaly, M. Vitvarova, R. Anantharaman, D. Berstad, B. Hagen, J. Jakobsen, V. Novotny, G. Skaugen, Techno-economic comparison of three technologies for pre-combustion CO2 capture from a lignite-fired IGCC, Front. Chem. Sci. Eng. 14(3) (2020) 436-452. [47] N. Nakaten, T. Kempka, Techno-economic comparison of onshore and offshore underground coal gasification end-product competitiveness, Energies 10(10) (2017) 1643. |
[1] | Peipei Ai, Huiqing Jin, Jie Li, Xiaodong Wang, Wei Huang. Ultra-stable Cu-based catalyst for dimethyl oxalate hydrogenation to ethylene glycol [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 186-193. |
[2] | Xiaolin Guo, Zhaoyang Zhang, Pengfei Xing, Shuai Wang, Yibing Guo, Yanxin Zhuang. Kinetic mechanism of copper extraction from methylchlorosilane slurry residue using hydrogen peroxide as oxidant [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 228-234. |
[3] | Hae-Kyun Park, Dong-Hyuk Park, Bum-Jin Chung. Influence of the electrolyte conductivity on the critical current density and the breakdown voltage [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 169-175. |
[4] | Zhonghao Li, Yuanyuan Yang, Huanong Cheng, Yun Teng, Chao Li, Kangkang Li, Zhou Feng, Hongwei Jin, Xinshun Tan, Shiqing Zheng. Measurement and model of density, viscosity, and hydrogen sulfide solubility in ferric chloride/trioctylmethylammonium chloride ionic liquid [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 210-221. |
[5] | Qunfeng Zhang, Bingcheng Li, Yuan Zhou, Deshuo Zhang, Chunshan Lu, Feng Feng, Jinghui Lv, Qingtao Wang, Xiaonian Li. Regulation of the selective hydrogenation performance of sulfur-doped carbon-supported palladium on chloronitrobenzene [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 69-75. |
[6] | Wende Tian, Jiawei Zhang, Zhe Cui, Haoran Zhang, Bin Liu. Microscopic mechanism study and process optimization of dimethyl carbonate production coupled biomass chemical looping gasification system [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 291-305. |
[7] | Bin Gao, Junwen Chen, Qi Zuo, Hongyan Wang, Wenlin Li. The critical role of Zr in controlling the activity of Pd/Beta on the hydrogenation of phenol to cyclohexanone [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 79-87. |
[8] | Yunchang Fan, Chunyan Zhu, Sheli Zhang, Lei Zhang, Qiang Wang, Feng Wang. Efficient and selective extraction of sinomenine by deep eutectic solvents [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 109-117. |
[9] | Qi Yang, Weikang Dai, Maoshuai Li, Jie Wei, Yi Feng, Cheng Yang, Wanxin Yang, Ying Zheng, Jie Ding, Mei-Yan Wang, Xinbin Ma. Enhanced selective hydrogenation of glycolaldehyde to ethylene glycol over Cu0-Cu+ sites [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 141-150. |
[10] | Shujun Peng, Song Lei, Sisi Wen, Jian Xue, Haihui Wang. A Ruddlesden–Popper oxide as a carbon dioxide tolerant cathode for solid oxide fuel cells that operate at intermediate temperatures [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 25-32. |
[11] | Chao Yang, Zhelin Su, Yeshuang Wang, Huiling Fan, Meisheng Liang, Zhaohui Chen. Insight into the effect of gel drying temperature on the structure and desulfurization performance of ZnO/SiO2 adsorbents [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 233-241. |
[12] | Qiaoqiao Liu, Guihong Lin, Jian Zhou, Liangliang Huang, Chang Liu. Hydrogen-bond mediated and concentrate-dependent NaHCO3 crystal morphology in NaHCO3–Na2CO3 aqueous solution: Experiments and computer simulations [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 49-58. |
[13] | Peipei Ai, Li Zhang, Jinchi Niu, Huiqing Jin, Wei Huang. Boron-doped lamellar porous carbon supported copper catalyst for dimethyl oxalate hydrogenation [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 222-229. |
[14] | Yuandong Cui, Bin He, Yu Lei, Yu Liang, Wanting Zhao, Jian Sun, Xiaomin Liu. Lignin derived absorbent for efficient and sustainable CO2 capture [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 89-97. |
[15] | Suhang Jiang, Lijuan Tan, Yujia Tong, Lijian Shi, Weixing Li. A heterogeneous double chamber electro-Fenton with high production of H2O2 using La–CeO2 modified graphite felt as cathode [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 98-105. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 173
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 187
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||