Chinese Journal of Chemical Engineering ›› 2021, Vol. 36 ›› Issue (8): 199-222.DOI: 10.1016/j.cjche.2020.08.020
Previous Articles Next Articles
Mohamed A. El-Nemr1, Ibrahim M. A. Ismail1,2, Nabil M. Abdelmonem1, Ahmed El Nemr3, Safaa Ragab3
Received:
2020-05-23
Revised:
2020-07-24
Online:
2021-09-30
Published:
2021-08-28
Contact:
Ahmed El Nemr
Mohamed A. El-Nemr1, Ibrahim M. A. Ismail1,2, Nabil M. Abdelmonem1, Ahmed El Nemr3, Safaa Ragab3
通讯作者:
Ahmed El Nemr
Mohamed A. El-Nemr, Ibrahim M. A. Ismail, Nabil M. Abdelmonem, Ahmed El Nemr, Safaa Ragab. Amination of biochar surface from watermelon peel for toxic chromium removal enhancement[J]. Chinese Journal of Chemical Engineering, 2021, 36(8): 199-222.
Mohamed A. El-Nemr, Ibrahim M. A. Ismail, Nabil M. Abdelmonem, Ahmed El Nemr, Safaa Ragab. Amination of biochar surface from watermelon peel for toxic chromium removal enhancement[J]. 中国化学工程学报, 2021, 36(8): 199-222.
[1] A. Jawed, V. Saxena, L.M. Pandey, Engineered nanomaterials and their surface functionalization for the removal of heavy metals:a review, J. Water Process Eng. 33(2020) 101009. [2] Y. Jiang, Y. Shang, T. Gong, Z. Hu, K. Yang, S. Shao, High concentration of Mn2+ has multiple influences on aerobic granular sludge for aniline wastewater treatment, Chemosphere 240(2020) 124945. [3] F.D. Owa, Water pollution:sources, effects, control and management, Mediterr. J. Soc. Sci. 4(8) (2013) 65-68. [4] M. Selvaraj, A. Hai, F. Banat, M. Abu Haija, Application and prospects of carbon nanostructured materials in water treatment:a review, J. Water Process Eng. 33(2020) 100996. [5] S. Tang, Y. Qiu, Selective separation and recovery of heavy metals from electroplating effluent using shear-induced dissociation coupling with ultrafiltration, Chemosphere 236(2019) 124330. [6] S. Liu, G. Cheng, Y. Xiong, Y. Ding, X. Luo, Adsorption of low concentrations of bromide ions from water by cellulosebased beads modified with TEMPO-mediated oxidation and Fe(III) complexation, J. Hazard. Mater. 384(2020) 121195. [7] Y. Jiang, Y. Liu, H. Zhang, K. Yang, J. Li, S. Shao, Aerobic granular sludge shows enhanced resistances to the long-term toxicity of Cu(II), Chemosphere 253(2020) 126664. [8] M. Costa, Potential hazards of hexavalent chromate in our drinking water, Toxicol. Appl. Pharmacol. 188(2003) 1-5. [9] G. Tiravanti, D. Petruzzelli, R. Passino, Pretreatment of tannery wastewaters by an ion exchange process for Cr (III) removal and recovery, Water Sci. Technol. 36(2-3) (1997) 197-207. [10] Z. Song, C.J. Williams, R.G.J. Edyvean, Sedimentation of tannery wastewater, Water Res. 34(7) (2000) 2171-2176. [11] M.M. Bello, A.A. Abdul Raman, A. Asghar, Activated carbon as carrier in fluidized bed reactor for Fenton oxidation of recalcitrant dye:oxidation-adsorption synergy and surface interaction, J. Water Process Eng. 33(2020) 101001. [12] A.G. Vlyssides, C.J. Israilides, Detoxification of tannery waste liquors with an electrolysis system, Environ. Pollut. 97(1-2) (1997) 147-152. [13] A. Filibeli, N. Buyukkamaci, H. Senol, Solidification of tannery wastes, Resour. Conserv. Recycl. 29(4) (2000) 251-261. [14] M. Li, X. Gao, C. Li, C. Yang, C. Fu, J. Liu, R. Wang, L. Chen, J. Lin, X. Liu, J. Lin, X. Pang, Isolation and identification of chromium reducing bacillus cereus species from chromiumcontaminated soil for the biological detoxification of chromium, Int. J. Env. Res. Pub. He. 17(2020) 2118. [15] Z. Song, C.J. Williams, R.G.J. Edyvean, Treatment of tannery wastewater by chemical coagulation, Desalination 164(3) (2004) 249-259. [16] C. Fabiani, F. Ruscio, M. Spadoni, M. Pizzichini, Chromium (III) salts recovery process from tannery wastewaters, Desalination 108(1-3) (1997) 183-191. [17] A.I. Hafez, M.S. El-Manharawy, M.A. Khedr, RO membrane removal of unreacted chromium from spent tanning effluent. A pilot-scale study, part 2, Desalination 144(1-3) (2002) 237-242. [18] F.S. Teodoro, O.F.H. Adarme, L.F. Gil, L.V.A. Gurgel, Synthesis and application of a new carboxylated cellulose derivative. Part II:removal of Co2+, Cu2+ and Ni2+ from bicomponent spiked aqueous solution, J. Colloid Interface Sci. 487(2017) 266-280. [19] Y. Ma, J. Zeng, Y. Zeng, H. Zhou, G. Liu, Y. Liu, L. Zeng, J. Jian, Z. Yuan, Preparation and performance of poly(4-vinylpyridine)-b-polysulfone-b-poly (4-vinylpyridine) triblock copolymer/polysulfone blend membrane for separation of palladium (II) from electroplating wastewaters, J. Hazard. Mater. 384(2020) 121277. [20] A. El Nemr, Potential of pomegranate husk carbon for Cr(VI) removal from wastewater:kinetic and isotherm studies, J. Hazard. Mater. 161(2009) 132-141. [21] A. El Nemr, A. El Sikaily, A. Khaled, O. Abdelwahab, Removal of toxic chromium (VI) from aqueous solution by activated carbon using Casuarina Equisetifolia, Chem. Ecol. 23(2) (2007) 119-129. [22] A. Eleryan, A. El Nemr, M. Mashaly, A. Khaled, 6-Triethylenetetramine 6-deoxycellulose grafted with crotonaldehyde as adsorbent for Cr(VI) removal from wastewater, Int. J. Sci. Eng. Res. 10(7) (2019) 1199-1211. [23] A. El Nemr, M.M. El Sadaawy, A. Khaled, A. El Sikaily, Adsorption of the anionic dye Direct Red 23 onto new activated carbons developed from Cynara cardunculus:kinetics, equilibrium and thermodynamics, Blue Biotechnol. J. 3(1) (2014) 121-142. [24] A. El Nemr, A. Khaled, O. Abdelwahab, A. El-Sikaily, Treatment of wastewater containing toxic chromium using new activated carbon developed from date palm seed, J. Hazard. Mater. 152(1) (2008) 263-275. [25] A. El Nemr, Pomegranate husk as an adsorbent in the removal of toxic chromium from wastewater, Chem. Ecol. 23(5) (2007) 409-425. [26] A. El Sikaily, A. El Nemr, A. Khaled, O. Abdelwahab, Removal of toxic chromium from wastewater using green alga Ulva lactuca and its activated carbon, J. Hazard. Mater. 148(2007) 216-228. [27] A. El Nemr, A. El Sikaily, A. Khaled, O. Abdelwahab, Removal of toxic chromium from aqueous solution, wastewater and saline water by marine red alga Pterocladia capillacea and its activated carbon, Arab. J. Chem. 8(2015) 105-117. [28] O. Abdelwahab, A. El Sikaily, A.z Khaled, A. El Nemr, Mass transfer processes of chromium (VI) adsorption onto guava seeds, Chem. Ecol. 23(1) (2007) 73-85. [29] A. El Nemr (Ed.), Non-Conventional Textile Waste Water Treatment, Nova Science Publishers, Inc, Hauppauge New York 2012, p. 267. [30] G. Yin, Z. Liu, Q. Liu, W. Wu, The role of different properties of activated carbon in CO2 adsorption, Chem. Eng. J. 230(2013) 133-140. [31] Y.Li,B.Chen,L.Zhu, Single -solute and bi-solute sorption of phenantheren and pyrene onto pine needle cuticular fractions, Environ. Pollut. 158(7) (2010) 2478-2484. [32] S. Kumar, V.A. Loganathan, R.B. Gupta, M.O. Barnett, An assessment of U(VI) removal from groundwater using biochar produced from hydrothermal carbonization, J. Environ. Manag. 92(2011) 2504-2512. [33] Y. Yao, B. Gao, M. Inyang, A.R. Zimmerman, X. Cao, P. Pullammanappallil, L. Yang, Biochar derived from anaerobically digested sugar beet tailings:characterization and phosphate removal potential, Bioresour. Technol. 102(2011) 6273-6278. [34] H. Lu, W. Zhang, Y. Yang, X. Huang, S. Wang, R. Qiu, Relative distribution of Pb2+ sorption mechanisms by sludge-derived biochar, Water Res. 46(2012) 854-862. [35] T.W. Chen, L. Luo, S.H. Deng, G.Z. Shi, S.R. Zhang, Y.Z. Zhang, O.P. Deng, L.L. Wang, J. Zhang, L.Y. Wei, Sorption of tetracycline on H3PO4 modified biochar derived from rice straw and swine manure, Bioresour. Technol. 267(2018) 431-437. [36] J. Liang, X.M. Li, Z.G. Yu, G.M. Zeng, Y. Luo, L.B. Jiang, Z.X. Yang, Amorphous MnO2 modified biochar derived from aerobically composted swine manure for adsorption of Pb(II) and Cd (II), ACS Sustain. Chem. Eng. 5(2017) 5049-5058. [37] W.J. Liu, F.X. Zeng, H. Jiang, X.S. Zhang, Preparation of high adsorption capacity biochars from waste biomass, Bioresour. Technol. 102(2011) 8247-8252. [38] L. Wang, Y. Wang, F. Ma, V. Tankpa, S. Bai, X. Guo, Mechanisms and reutilization of modified biochar used for removal of heavy metals from wastewater:a review, Wang Sci. Total Environ. 668(2019) 1298-1309. [39] Y. Yao, B. Gao, J. Fang, M. Zhang, H. Chen, Y. Zhou, A. Creamer, Y. Sun, L. Yang, Characterization and environmental applications of clay-biochar composites, Chem. Eng. J. 242(2014) 136-143. [40] H. Zhang, A.G. Hay, Magnetic biochar derived from biosolids via hydrothermal carbonization:enzyme immobilization, immobilized-enzyme kinetics, environmental toxicity, J. Hazard. Mater. 384(2020) 121272. [41] D. Zhang, Y. Li, S. Tong, X. Jiang, L. Wang, X. Sun, et al., Biochar supported sulfidemodified nanoscale zero-valent iron for the reduction of nitrobenzene, RSC Adv. 8(39) (2018) 22161-22168. [42] H. Zhang, X. Yue, F. Li, R. Xiao, Y. Zhang, D. Gu, Preparation of rice straw-derived biochar for efficient cadmium removal by modification of oxygen-containing functional groups, Sci. Total Environ. 631-632(2018) 795-802. [43] Z. Song, F. Lian, Z. Yu, L. Zhu, B. Xing, W. Qiu, Synthesis and characterization of a novel MnOx -loaded biochar and its adsorption properties for Cu2+ in aqueous solution, Chem. Eng. J. 242(242) (2014) 36-42. [44] D. Jimenez-Cordero, F. Heras, N. Alonso-Morales, M. Gilarranz, J. Rodriguez, Ozone as oxidation agent in cyclic activation of biochar, Fuel Process. Technol. 139(2015) 42-48. [45] Z. Chang, L. Tian, M. Wu, X. Dong, J. Peng, B. Pan, Molecular markers of benzene polycarboxylic acids in describing biochar physiochemical properties and sorption characteristics, Environ. Pollut. 237(2018) 541. [46] I. Liatsou, G. Michail, M. Demetriou, I. Pashalidis, Uranium binding by biochar fibers derived from luffa cylindrical after controlled surface oxidation, J. Radioanal. Nucl. Chem. 311(1) (2017) 871-875. [47] Y. Ma, W.J. Liu, N. Zhang, Y.S. Li, H. Jiang, G.P. Sheng, Polyethylenimine modified biochar adsorbent for hexavalent chromium removal from the aqueous solution, Bioresour. Technol. 169(5) (2014) 403-408. [48] J. Pan, J. Jiang, R. Xu, Removal of Cr(VI) from aqueous solutions by Na2SO3/FeSO4 combined with peanut straw biochar, Chemosphere 101(3) (2014) 71-76. [49] M.A. Hassaan, A. El Nemr, F.F. Madkour, Testing the advanced oxidation processes on the degradation of direct blue 86 dye in wastewater, Egypt. J. Aquat. Res. 43(2017) 11-19. [50] M.A. Hassaan, A. El Nemr, F.F. Madkour, Advanced oxidation processes of mordant violet 40 dye in freshwater and seawater, Egypt. J. Aquat. Res. 43(2017) 1-9. [51] S.J. Gregg, K.S.W. Sing, Adsorption Surface Area and Porosity, 2nd ed. Academic Press INC., London, 1982. [52] F. Rouquerol, J. Rouquerol, K.S.W. Sing, Adsorption by Powders and Porous Solids, Academic Press INC., London, 1999. [53] E.P. Barrett, L.G. Joyner, P.P. Halenda, The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms, J. Amer. Chem. Soc. 73(1) (1951) 373-380. [54] I. Langmuir, The constitution and fundamental properties of solids and liquids, J. Amer. Chem. Soc. 38(1916) 2221-2295. [55] M. Doğan, M. Alkan, Y. Onganer, Adsorption of methylene blue from aqueous solution onto perlite, Water Air Soil Pollut. 120(2000) 229-249. [56] D.G. Kinniburgh, General purpose adsorptionisotherms, Environ. Sci. Technol. 20(1986) 895-904. [57] E. Longhinotti, F. Pozza, L. Furlan, M.D.N.D. Sanchez, M. Klug, M.C.M. Laranjeira, V.T. Favere, Adsorption of anionic dyes on the biopolymer chitin, J. Braz. Chem. Soc. 9(1998) 435-440. [58] H.M.F. Freundlich, Über die adsorption inlösungen, Z. Phys. Chem. (Leipzig) 57A (1906) 385-470. [59] G.D. Halsey, Physical adsorption in nonuniform surfaces, J. Chem. Phys. 16(1948) 931-945. [60] M.J. Tempkin, V. Pyzhev, Kinetics of ammonia synthesis on promoted iron catalysts, Acta Physiochim, URSS 12(1940) 217-222. [61] D. Kavitha, C. Namasivayam, Experimental and kinetic studies on methylene blue adsorption by coirpith carbon, Bioresour. Technol. 98(2007) 14-21. [62] C. Aharoni, M. Ungarish, Kinetics of activated chemisorption. Part 2. Theoretical models, J. Chem. Soc. Faraday Trans. 73(1977) 456-464. [63] C. Aharoni, D.L. Sparks, Kinetics of soil chemical reactions-a theoretical treatment, in:D.L. Sparks, D.L. Suarez (Eds.), Rate of Soil Chemical Processes, Soil Sci. Soc. America, Madison, WI 1991, pp. 1-18. [64] X.S. Wang, Y. Qin, Equilibrium sorption isotherms for of Cu2+ on rice bran, Process Biochem. 40(2005) 677-680. [65] C.I. Pearce, J.R. Lioyd, J.T. Guthrie, The removal of color from textile wastewater using whole bacterial cells:a review, Dyes Pigments 58(2003) 179-196. [66] G. Akkaya, A. Ozer, Adsorption of acid red 274(AR 274) on Dicranellavaria:determination of equilibrium and kinetic model parameters, Process Biochem. 40(11) (2005) 3559-3568. [67] S. Lagergren, Zurtheorie der sogenannten adsorption gelosterstoffe, Kungliga Svenska Vetenskapsakademiens. Handlingar 24(1898) 1-39. [68] Y.S. Ho, G. McKay, D.A.J. Wase, C.F. Foster, Study of the sorption of divalent metal ions on to peat, Adsorpt. Sci. Technol. 18(2000) 639-650. [69] J. Zeldowitsch, Über den mechanismus derkatalytischen oxidation von CO and MnO2, Acta Physicochim. URSS 1(1934) 364-449. [70] S.H. Chien, W.R. Clayton, Application of Elovich equation to the kinetics of phosphate release and sorption on soils, Soil Sci. Soc. Amer. J. 44(1980) 265-268. [71] D.L. Sparks, Kinetics of Reaction in Pure and Mixed Systems, in Soil Physical Chemistry, CRC Press, Boca Raton, 1986. [72] W.J. Weber, J.C. Morris, Kinetics of adsorption on carbon from solution, Journal Sanit. Engineering Division. Amer. Soc. Civil Eng. 89(1963) 31-60. [73] K. Srinivasan, N. Balasubramanian, T.V. Ramakrishan, Studies on chromium removal by rice husk carbon. Ind, J. Environ. Health 30(1988) 376-387. [74] J.C.Y. Ng, W.H. Cheung, G. McKay, Equilibrium studies of the sorption of Cu(II) ions onto chitosan, J. Coll. Interference Sci. 255(2002) 64-74. [75] J.F. Porter, G. McKay, K.H. Choy, The prediction of sorption from a binary mixture of acidic des using single- and mixed-isotherm variants of the ideal adsorbed solute theory, Chem. Eng. Sci. 54(1999) 5863-5885. [76] S.J. Allen, Q. Gan, R. Matthews, P.A. Johnson, Comparison of optimized isotherm models for basic dye adsorption by kudzu, Bioresour. Technol. 88(2003) 143-152. [77] Y.S. Ho, W.T. Chiu, C.C. Wang, Regression analysis for the sorption isotherms of basic dyes on sugarcane dust, Bioresour. Technol. 96(2005) 1285-1291. [78] L. Liu, W. Cui, C. Lu, A. Zain, W. Zhang, G. Shen, S. Hu, X. Qian, Analyzing the adsorptive behavior of amoxicillin on four Zr-MOFs nanoparticles:functional groups dependence of adsorption performance and mechanisms, J. Environ. Manag. 268(2020) 110630. [79] Y. Wang, C. Peng, E. Padilla-Ortega, A. Robledo-Cabrera, A. Lopez-Valdivieso, Cr(VI) adsorption on activated carbon:mechanisms, modeling and limitations in water treatment, J. Environ. Chem. Eng. 8(4) (2020) 104031. [80] M. Aoyama, M. Kishino, T.S. Jo, Biosorption of Cr (VI) on Japanese cedar bark, Sep. Sci. Technol. 39(5) (2005) 1149-1162. [81] A.C.G. Junior, L. Strey, C.A. Lindino, H. Nacke, D. Schwantes, E.P. Seidel, Applicability of the Pinus bark (Pinus elliottii) for the adsorption of toxic heavy metals from aqueous solutions, Acta Sci. Technol. 34(1) (2012) 79-87. [82] M.S. Kumar, B. Phanikumar, Response surface modelling of Cr6+ adsorption from aqueous solution by neem bark powder:box-behnken experimental approach, Environ. Sci. Pollut. Res. 20(3) (2013) 1327-1343. [83] V. Sarin, K.K. Pant, Removal of chromium from industrial waste by using eucalyptus bark, Bioresour. Technol. 97(1) (2006) 15-20. [84] M. Vasudevan, P.S. Ajithkumar, R.P. Singh, N. Natarajan, Mass transfer kinetics using two-site interface model for removal of Cr(VI) from aqueous solution with cassava peel and rubber tree bark as adsorbents, Environ. Eng. Res. 21(2) (2015) 152-163. [85] A.L. Arim, M.J. Quina, L.M. Gando-Ferreira, Uptake of trivalent chromium from aqueous solutions by xanthate pine bark:characterization, batch and column studies, Process. Saf. Environ. Prot. 121(2019) 374-386. [86] Z. Hu, L. Lei, Y. Li, Y. Ni, Chromium adsorption on high-performance activated carbons from aqueous solution, Sep. Purif. Technol. 31(2003) 13-18. |
[1] | Yingli Li, Zhishuncheng Li, Guangfei Qu, Rui Li, Shuaiyu Liang, Junhong Zhou, Wei Ji, Huiming Tang. Mechanism, behaviour and application of iron nitrate modified carbon nanotube composites for the adsorption of arsenic in aqueous solutions [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 26-36. |
[2] | Jing Huang, Honghui Cai, Qian Zhao, Yunpeng Zhou, Haibo Liu, Jing Wang. Dual-functional pyrene implemented mesoporous silicon material used for the detection and adsorption of metal ions [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 108-117. |
[3] | Eileen Katherine Coronado-Aldana, Cindy Lizeth Ferreira-Salazar, Nubia Yineth Piñeros-Castro, Rubén Vázquez-Medina, Felipe A. Perdomo. Thermodynamic analysis, synthesis, characterization, and evaluation of 1-ethyl-3-methylimidazolium chloride: Study of its effect on pretreated rice husk [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 143-154. |
[4] | Lingli Chen, Yueting Shi, Sijun Xu, Junle Xiong, Fang Gao, Shengtao Zhang, Hongru Li. Enhanced adsorption of target branched compounds including antibiotic norfloxacin frameworks on mild steel surface for efficient protection: An experimental and molecular modelling study [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 212-227. |
[5] | Alexander Nti Kani, Evans Dovi, Aaron Albert Aryee, Runping Han, Zhaohui Li, Lingbo Qu. Mechanisms and reusability potentials of zirconium-polyaziridine-engineered tiger nut residue towards anionic pollutants [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 275-292. |
[6] | Yuan Liu, Hanting Xiong, Jingwen Chen, Shixia Chen, Zhenyu Zhou, Zheling Zeng, Shuguang Deng, Jun Wang. One-step ethylene separation from ternary C2 hydrocarbon mixture with a robust zirconium metal-organic framework [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 9-15. |
[7] | Hui Jiang, Zijian Zhao, Ning Yu, Yi Qin, Zhengwei Luo, Wenhua Geng, Jianliang Zhu. Synthesis, characterization, and performance comparison of boron using adsorbents based on N-methyl-D-glucosamine [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 16-31. |
[8] | Runze Chen, Yuran Chen, Xuemin Liang, Yapeng Kong, Yangyang Fan, Quan Liu, Zhenyu Yang, Feiying Tang, Johnny Muya Chabu, Maru Dessie Walle, Liqiang Wang. Oxidative exfoliation of spent cathode carbon: A two-in-one strategy for its decontamination and high-valued application [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 262-269. |
[9] | Shanghong Ma, Haitao Zhang, Jianbo Qu, Xiuzhong Zhu, Qingfei Hu, Jianyong Wang, Peng Ye, Futao Sai, Shiwei Chen. Preparation of waterborne polyurethane/β-cyclodextrin composite nanosponge by ion condensation method and its application in removing of dyes from wastewater [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 124-136. |
[10] | Haike Li, Xindong Li, Guozai Ouyang, Lang Li, Zhaohuang Zhong, Meng Cai, Wenhao Li, Wanfu Huang. Tannic acid/Fe3+ interlayer for preparation of high-permeability polyetherimide organic solvent nanofiltration membranes for organic solvent separation [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 17-29. |
[11] | Yueting Shi, Junhai Zhao, Lingli Chen, Hongru Li, Shengtao Zhang, Fang Gao. Double open mouse-like terpyridine parts based amphiphilic ionic molecules displaying strengthened chemical adsorption for anticorrosion of copper in sulfuric acid solution [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 233-246. |
[12] | Jian Wang, Yuanhui Shen, Donghui Zhang, Zhongli Tang, Wenbin Li. Integrated vacuum pressure swing adsorption and Rectisol process for CO2 capture from underground coal gasification syngas [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 265-279. |
[13] | Yujia Cui, Zhiqiang Tan, Yanan Wang, Shuxian Shi, Xiaonong Chen. One-step crosslinking preparation of tannic acid particles for the adsorption and separation of cationic dyes [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 309-318. |
[14] | Shanshan Mao, Tao Shen, Qing Zhao, Tong Han, Fan Ding, Xin Jin, Manglai Gao. Selective capture of silver ions from aqueous solution by series of azole derivatives-functionalized silica nanosheets [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 319-328. |
[15] | Hany M. Abd El-Lateef, Mai M. Khalaf, K. Shalabi, Antar A. Abdelhamid. Multicomponent synthesis and designing of tetrasubstituted imidazole compounds catalyzed via ionic-liquid for acid steel corrosion protection: Experimental exploration and theoretical calculations [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 304-319. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 452
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 202
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||