Chinese Journal of Chemical Engineering ›› 2021, Vol. 36 ›› Issue (8): 199-222.DOI: 10.1016/j.cjche.2020.08.020
Previous Articles Next Articles
Mohamed A. El-Nemr1, Ibrahim M. A. Ismail1,2, Nabil M. Abdelmonem1, Ahmed El Nemr3, Safaa Ragab3
Received:
2020-05-23
Revised:
2020-07-24
Online:
2021-09-30
Published:
2021-08-28
Contact:
Ahmed El Nemr
Mohamed A. El-Nemr1, Ibrahim M. A. Ismail1,2, Nabil M. Abdelmonem1, Ahmed El Nemr3, Safaa Ragab3
通讯作者:
Ahmed El Nemr
Mohamed A. El-Nemr, Ibrahim M. A. Ismail, Nabil M. Abdelmonem, Ahmed El Nemr, Safaa Ragab. Amination of biochar surface from watermelon peel for toxic chromium removal enhancement[J]. Chinese Journal of Chemical Engineering, 2021, 36(8): 199-222.
Mohamed A. El-Nemr, Ibrahim M. A. Ismail, Nabil M. Abdelmonem, Ahmed El Nemr, Safaa Ragab. Amination of biochar surface from watermelon peel for toxic chromium removal enhancement[J]. 中国化学工程学报, 2021, 36(8): 199-222.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2020.08.020
[1] A. Jawed, V. Saxena, L.M. Pandey, Engineered nanomaterials and their surface functionalization for the removal of heavy metals:a review, J. Water Process Eng. 33(2020) 101009. [2] Y. Jiang, Y. Shang, T. Gong, Z. Hu, K. Yang, S. Shao, High concentration of Mn2+ has multiple influences on aerobic granular sludge for aniline wastewater treatment, Chemosphere 240(2020) 124945. [3] F.D. Owa, Water pollution:sources, effects, control and management, Mediterr. J. Soc. Sci. 4(8) (2013) 65-68. [4] M. Selvaraj, A. Hai, F. Banat, M. Abu Haija, Application and prospects of carbon nanostructured materials in water treatment:a review, J. Water Process Eng. 33(2020) 100996. [5] S. Tang, Y. Qiu, Selective separation and recovery of heavy metals from electroplating effluent using shear-induced dissociation coupling with ultrafiltration, Chemosphere 236(2019) 124330. [6] S. Liu, G. Cheng, Y. Xiong, Y. Ding, X. Luo, Adsorption of low concentrations of bromide ions from water by cellulosebased beads modified with TEMPO-mediated oxidation and Fe(III) complexation, J. Hazard. Mater. 384(2020) 121195. [7] Y. Jiang, Y. Liu, H. Zhang, K. Yang, J. Li, S. Shao, Aerobic granular sludge shows enhanced resistances to the long-term toxicity of Cu(II), Chemosphere 253(2020) 126664. [8] M. Costa, Potential hazards of hexavalent chromate in our drinking water, Toxicol. Appl. Pharmacol. 188(2003) 1-5. [9] G. Tiravanti, D. Petruzzelli, R. Passino, Pretreatment of tannery wastewaters by an ion exchange process for Cr (III) removal and recovery, Water Sci. Technol. 36(2-3) (1997) 197-207. [10] Z. Song, C.J. Williams, R.G.J. Edyvean, Sedimentation of tannery wastewater, Water Res. 34(7) (2000) 2171-2176. [11] M.M. Bello, A.A. Abdul Raman, A. Asghar, Activated carbon as carrier in fluidized bed reactor for Fenton oxidation of recalcitrant dye:oxidation-adsorption synergy and surface interaction, J. Water Process Eng. 33(2020) 101001. [12] A.G. Vlyssides, C.J. Israilides, Detoxification of tannery waste liquors with an electrolysis system, Environ. Pollut. 97(1-2) (1997) 147-152. [13] A. Filibeli, N. Buyukkamaci, H. Senol, Solidification of tannery wastes, Resour. Conserv. Recycl. 29(4) (2000) 251-261. [14] M. Li, X. Gao, C. Li, C. Yang, C. Fu, J. Liu, R. Wang, L. Chen, J. Lin, X. Liu, J. Lin, X. Pang, Isolation and identification of chromium reducing bacillus cereus species from chromiumcontaminated soil for the biological detoxification of chromium, Int. J. Env. Res. Pub. He. 17(2020) 2118. [15] Z. Song, C.J. Williams, R.G.J. Edyvean, Treatment of tannery wastewater by chemical coagulation, Desalination 164(3) (2004) 249-259. [16] C. Fabiani, F. Ruscio, M. Spadoni, M. Pizzichini, Chromium (III) salts recovery process from tannery wastewaters, Desalination 108(1-3) (1997) 183-191. [17] A.I. Hafez, M.S. El-Manharawy, M.A. Khedr, RO membrane removal of unreacted chromium from spent tanning effluent. A pilot-scale study, part 2, Desalination 144(1-3) (2002) 237-242. [18] F.S. Teodoro, O.F.H. Adarme, L.F. Gil, L.V.A. Gurgel, Synthesis and application of a new carboxylated cellulose derivative. Part II:removal of Co2+, Cu2+ and Ni2+ from bicomponent spiked aqueous solution, J. Colloid Interface Sci. 487(2017) 266-280. [19] Y. Ma, J. Zeng, Y. Zeng, H. Zhou, G. Liu, Y. Liu, L. Zeng, J. Jian, Z. Yuan, Preparation and performance of poly(4-vinylpyridine)-b-polysulfone-b-poly (4-vinylpyridine) triblock copolymer/polysulfone blend membrane for separation of palladium (II) from electroplating wastewaters, J. Hazard. Mater. 384(2020) 121277. [20] A. El Nemr, Potential of pomegranate husk carbon for Cr(VI) removal from wastewater:kinetic and isotherm studies, J. Hazard. Mater. 161(2009) 132-141. [21] A. El Nemr, A. El Sikaily, A. Khaled, O. Abdelwahab, Removal of toxic chromium (VI) from aqueous solution by activated carbon using Casuarina Equisetifolia, Chem. Ecol. 23(2) (2007) 119-129. [22] A. Eleryan, A. El Nemr, M. Mashaly, A. Khaled, 6-Triethylenetetramine 6-deoxycellulose grafted with crotonaldehyde as adsorbent for Cr(VI) removal from wastewater, Int. J. Sci. Eng. Res. 10(7) (2019) 1199-1211. [23] A. El Nemr, M.M. El Sadaawy, A. Khaled, A. El Sikaily, Adsorption of the anionic dye Direct Red 23 onto new activated carbons developed from Cynara cardunculus:kinetics, equilibrium and thermodynamics, Blue Biotechnol. J. 3(1) (2014) 121-142. [24] A. El Nemr, A. Khaled, O. Abdelwahab, A. El-Sikaily, Treatment of wastewater containing toxic chromium using new activated carbon developed from date palm seed, J. Hazard. Mater. 152(1) (2008) 263-275. [25] A. El Nemr, Pomegranate husk as an adsorbent in the removal of toxic chromium from wastewater, Chem. Ecol. 23(5) (2007) 409-425. [26] A. El Sikaily, A. El Nemr, A. Khaled, O. Abdelwahab, Removal of toxic chromium from wastewater using green alga Ulva lactuca and its activated carbon, J. Hazard. Mater. 148(2007) 216-228. [27] A. El Nemr, A. El Sikaily, A. Khaled, O. Abdelwahab, Removal of toxic chromium from aqueous solution, wastewater and saline water by marine red alga Pterocladia capillacea and its activated carbon, Arab. J. Chem. 8(2015) 105-117. [28] O. Abdelwahab, A. El Sikaily, A.z Khaled, A. El Nemr, Mass transfer processes of chromium (VI) adsorption onto guava seeds, Chem. Ecol. 23(1) (2007) 73-85. [29] A. El Nemr (Ed.), Non-Conventional Textile Waste Water Treatment, Nova Science Publishers, Inc, Hauppauge New York 2012, p. 267. [30] G. Yin, Z. Liu, Q. Liu, W. Wu, The role of different properties of activated carbon in CO2 adsorption, Chem. Eng. J. 230(2013) 133-140. [31] Y.Li,B.Chen,L.Zhu, Single -solute and bi-solute sorption of phenantheren and pyrene onto pine needle cuticular fractions, Environ. Pollut. 158(7) (2010) 2478-2484. [32] S. Kumar, V.A. Loganathan, R.B. Gupta, M.O. Barnett, An assessment of U(VI) removal from groundwater using biochar produced from hydrothermal carbonization, J. Environ. Manag. 92(2011) 2504-2512. [33] Y. Yao, B. Gao, M. Inyang, A.R. Zimmerman, X. Cao, P. Pullammanappallil, L. Yang, Biochar derived from anaerobically digested sugar beet tailings:characterization and phosphate removal potential, Bioresour. Technol. 102(2011) 6273-6278. [34] H. Lu, W. Zhang, Y. Yang, X. Huang, S. Wang, R. Qiu, Relative distribution of Pb2+ sorption mechanisms by sludge-derived biochar, Water Res. 46(2012) 854-862. [35] T.W. Chen, L. Luo, S.H. Deng, G.Z. Shi, S.R. Zhang, Y.Z. Zhang, O.P. Deng, L.L. Wang, J. Zhang, L.Y. Wei, Sorption of tetracycline on H3PO4 modified biochar derived from rice straw and swine manure, Bioresour. Technol. 267(2018) 431-437. [36] J. Liang, X.M. Li, Z.G. Yu, G.M. Zeng, Y. Luo, L.B. Jiang, Z.X. Yang, Amorphous MnO2 modified biochar derived from aerobically composted swine manure for adsorption of Pb(II) and Cd (II), ACS Sustain. Chem. Eng. 5(2017) 5049-5058. [37] W.J. Liu, F.X. Zeng, H. Jiang, X.S. Zhang, Preparation of high adsorption capacity biochars from waste biomass, Bioresour. Technol. 102(2011) 8247-8252. [38] L. Wang, Y. Wang, F. Ma, V. Tankpa, S. Bai, X. Guo, Mechanisms and reutilization of modified biochar used for removal of heavy metals from wastewater:a review, Wang Sci. Total Environ. 668(2019) 1298-1309. [39] Y. Yao, B. Gao, J. Fang, M. Zhang, H. Chen, Y. Zhou, A. Creamer, Y. Sun, L. Yang, Characterization and environmental applications of clay-biochar composites, Chem. Eng. J. 242(2014) 136-143. [40] H. Zhang, A.G. Hay, Magnetic biochar derived from biosolids via hydrothermal carbonization:enzyme immobilization, immobilized-enzyme kinetics, environmental toxicity, J. Hazard. Mater. 384(2020) 121272. [41] D. Zhang, Y. Li, S. Tong, X. Jiang, L. Wang, X. Sun, et al., Biochar supported sulfidemodified nanoscale zero-valent iron for the reduction of nitrobenzene, RSC Adv. 8(39) (2018) 22161-22168. [42] H. Zhang, X. Yue, F. Li, R. Xiao, Y. Zhang, D. Gu, Preparation of rice straw-derived biochar for efficient cadmium removal by modification of oxygen-containing functional groups, Sci. Total Environ. 631-632(2018) 795-802. [43] Z. Song, F. Lian, Z. Yu, L. Zhu, B. Xing, W. Qiu, Synthesis and characterization of a novel MnOx -loaded biochar and its adsorption properties for Cu2+ in aqueous solution, Chem. Eng. J. 242(242) (2014) 36-42. [44] D. Jimenez-Cordero, F. Heras, N. Alonso-Morales, M. Gilarranz, J. Rodriguez, Ozone as oxidation agent in cyclic activation of biochar, Fuel Process. Technol. 139(2015) 42-48. [45] Z. Chang, L. Tian, M. Wu, X. Dong, J. Peng, B. Pan, Molecular markers of benzene polycarboxylic acids in describing biochar physiochemical properties and sorption characteristics, Environ. Pollut. 237(2018) 541. [46] I. Liatsou, G. Michail, M. Demetriou, I. Pashalidis, Uranium binding by biochar fibers derived from luffa cylindrical after controlled surface oxidation, J. Radioanal. Nucl. Chem. 311(1) (2017) 871-875. [47] Y. Ma, W.J. Liu, N. Zhang, Y.S. Li, H. Jiang, G.P. Sheng, Polyethylenimine modified biochar adsorbent for hexavalent chromium removal from the aqueous solution, Bioresour. Technol. 169(5) (2014) 403-408. [48] J. Pan, J. Jiang, R. Xu, Removal of Cr(VI) from aqueous solutions by Na2SO3/FeSO4 combined with peanut straw biochar, Chemosphere 101(3) (2014) 71-76. [49] M.A. Hassaan, A. El Nemr, F.F. Madkour, Testing the advanced oxidation processes on the degradation of direct blue 86 dye in wastewater, Egypt. J. Aquat. Res. 43(2017) 11-19. [50] M.A. Hassaan, A. El Nemr, F.F. Madkour, Advanced oxidation processes of mordant violet 40 dye in freshwater and seawater, Egypt. J. Aquat. Res. 43(2017) 1-9. [51] S.J. Gregg, K.S.W. Sing, Adsorption Surface Area and Porosity, 2nd ed. Academic Press INC., London, 1982. [52] F. Rouquerol, J. Rouquerol, K.S.W. Sing, Adsorption by Powders and Porous Solids, Academic Press INC., London, 1999. [53] E.P. Barrett, L.G. Joyner, P.P. Halenda, The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms, J. Amer. Chem. Soc. 73(1) (1951) 373-380. [54] I. Langmuir, The constitution and fundamental properties of solids and liquids, J. Amer. Chem. Soc. 38(1916) 2221-2295. [55] M. Doğan, M. Alkan, Y. Onganer, Adsorption of methylene blue from aqueous solution onto perlite, Water Air Soil Pollut. 120(2000) 229-249. [56] D.G. Kinniburgh, General purpose adsorptionisotherms, Environ. Sci. Technol. 20(1986) 895-904. [57] E. Longhinotti, F. Pozza, L. Furlan, M.D.N.D. Sanchez, M. Klug, M.C.M. Laranjeira, V.T. Favere, Adsorption of anionic dyes on the biopolymer chitin, J. Braz. Chem. Soc. 9(1998) 435-440. [58] H.M.F. Freundlich, Über die adsorption inlösungen, Z. Phys. Chem. (Leipzig) 57A (1906) 385-470. [59] G.D. Halsey, Physical adsorption in nonuniform surfaces, J. Chem. Phys. 16(1948) 931-945. [60] M.J. Tempkin, V. Pyzhev, Kinetics of ammonia synthesis on promoted iron catalysts, Acta Physiochim, URSS 12(1940) 217-222. [61] D. Kavitha, C. Namasivayam, Experimental and kinetic studies on methylene blue adsorption by coirpith carbon, Bioresour. Technol. 98(2007) 14-21. [62] C. Aharoni, M. Ungarish, Kinetics of activated chemisorption. Part 2. Theoretical models, J. Chem. Soc. Faraday Trans. 73(1977) 456-464. [63] C. Aharoni, D.L. Sparks, Kinetics of soil chemical reactions-a theoretical treatment, in:D.L. Sparks, D.L. Suarez (Eds.), Rate of Soil Chemical Processes, Soil Sci. Soc. America, Madison, WI 1991, pp. 1-18. [64] X.S. Wang, Y. Qin, Equilibrium sorption isotherms for of Cu2+ on rice bran, Process Biochem. 40(2005) 677-680. [65] C.I. Pearce, J.R. Lioyd, J.T. Guthrie, The removal of color from textile wastewater using whole bacterial cells:a review, Dyes Pigments 58(2003) 179-196. [66] G. Akkaya, A. Ozer, Adsorption of acid red 274(AR 274) on Dicranellavaria:determination of equilibrium and kinetic model parameters, Process Biochem. 40(11) (2005) 3559-3568. [67] S. Lagergren, Zurtheorie der sogenannten adsorption gelosterstoffe, Kungliga Svenska Vetenskapsakademiens. Handlingar 24(1898) 1-39. [68] Y.S. Ho, G. McKay, D.A.J. Wase, C.F. Foster, Study of the sorption of divalent metal ions on to peat, Adsorpt. Sci. Technol. 18(2000) 639-650. [69] J. Zeldowitsch, Über den mechanismus derkatalytischen oxidation von CO and MnO2, Acta Physicochim. URSS 1(1934) 364-449. [70] S.H. Chien, W.R. Clayton, Application of Elovich equation to the kinetics of phosphate release and sorption on soils, Soil Sci. Soc. Amer. J. 44(1980) 265-268. [71] D.L. Sparks, Kinetics of Reaction in Pure and Mixed Systems, in Soil Physical Chemistry, CRC Press, Boca Raton, 1986. [72] W.J. Weber, J.C. Morris, Kinetics of adsorption on carbon from solution, Journal Sanit. Engineering Division. Amer. Soc. Civil Eng. 89(1963) 31-60. [73] K. Srinivasan, N. Balasubramanian, T.V. Ramakrishan, Studies on chromium removal by rice husk carbon. Ind, J. Environ. Health 30(1988) 376-387. [74] J.C.Y. Ng, W.H. Cheung, G. McKay, Equilibrium studies of the sorption of Cu(II) ions onto chitosan, J. Coll. Interference Sci. 255(2002) 64-74. [75] J.F. Porter, G. McKay, K.H. Choy, The prediction of sorption from a binary mixture of acidic des using single- and mixed-isotherm variants of the ideal adsorbed solute theory, Chem. Eng. Sci. 54(1999) 5863-5885. [76] S.J. Allen, Q. Gan, R. Matthews, P.A. Johnson, Comparison of optimized isotherm models for basic dye adsorption by kudzu, Bioresour. Technol. 88(2003) 143-152. [77] Y.S. Ho, W.T. Chiu, C.C. Wang, Regression analysis for the sorption isotherms of basic dyes on sugarcane dust, Bioresour. Technol. 96(2005) 1285-1291. [78] L. Liu, W. Cui, C. Lu, A. Zain, W. Zhang, G. Shen, S. Hu, X. Qian, Analyzing the adsorptive behavior of amoxicillin on four Zr-MOFs nanoparticles:functional groups dependence of adsorption performance and mechanisms, J. Environ. Manag. 268(2020) 110630. [79] Y. Wang, C. Peng, E. Padilla-Ortega, A. Robledo-Cabrera, A. Lopez-Valdivieso, Cr(VI) adsorption on activated carbon:mechanisms, modeling and limitations in water treatment, J. Environ. Chem. Eng. 8(4) (2020) 104031. [80] M. Aoyama, M. Kishino, T.S. Jo, Biosorption of Cr (VI) on Japanese cedar bark, Sep. Sci. Technol. 39(5) (2005) 1149-1162. [81] A.C.G. Junior, L. Strey, C.A. Lindino, H. Nacke, D. Schwantes, E.P. Seidel, Applicability of the Pinus bark (Pinus elliottii) for the adsorption of toxic heavy metals from aqueous solutions, Acta Sci. Technol. 34(1) (2012) 79-87. [82] M.S. Kumar, B. Phanikumar, Response surface modelling of Cr6+ adsorption from aqueous solution by neem bark powder:box-behnken experimental approach, Environ. Sci. Pollut. Res. 20(3) (2013) 1327-1343. [83] V. Sarin, K.K. Pant, Removal of chromium from industrial waste by using eucalyptus bark, Bioresour. Technol. 97(1) (2006) 15-20. [84] M. Vasudevan, P.S. Ajithkumar, R.P. Singh, N. Natarajan, Mass transfer kinetics using two-site interface model for removal of Cr(VI) from aqueous solution with cassava peel and rubber tree bark as adsorbents, Environ. Eng. Res. 21(2) (2015) 152-163. [85] A.L. Arim, M.J. Quina, L.M. Gando-Ferreira, Uptake of trivalent chromium from aqueous solutions by xanthate pine bark:characterization, batch and column studies, Process. Saf. Environ. Prot. 121(2019) 374-386. [86] Z. Hu, L. Lei, Y. Li, Y. Ni, Chromium adsorption on high-performance activated carbons from aqueous solution, Sep. Purif. Technol. 31(2003) 13-18. |
[1] | Xinxin Zhao, Wenlong Xu, Shuang Chen, Huie Liu, Xiaofei Yan, Yan Bao, Zexin Liu, Fan Yang, Huan Zhang, Ping Yu. Fabrication of super-elastic graphene aerogels by ambient pressure drying and application to adsorption of oils [J]. Chinese Journal of Chemical Engineering, 2022, 47(7): 89-97. |
[2] | Jinglei Cui, Qian Wang, Jianming Gao, Yanxia Guo, Fangqin Cheng. The selective adsorption of rare earth elements by modified coal fly ash based SBA-15 [J]. Chinese Journal of Chemical Engineering, 2022, 47(7): 155-164. |
[3] | Zhibin Ma, Xueli Zhang, Guangjun Lu, Yanxia Guo, Huiping Song, Fangqin Cheng. Hydrothermal synthesis of zeolitic material from circulating fluidized bed combustion fly ash for the highly efficient removal of lead from aqueous solution [J]. Chinese Journal of Chemical Engineering, 2022, 47(7): 193-205. |
[4] | Jipeng Dong, Fei Wang, Guanghui Chen, Shougui Wang, Cailin Ji, Fei Gao. Fabrication of nickel oxide functionalized zeolite USY composite as a promising adsorbent for CO2 capture [J]. Chinese Journal of Chemical Engineering, 2022, 46(6): 207-213. |
[5] | Yaling Li, Hao Ai, Liangzhi Qiao, Yinghong Wang, Kaifeng Du. Fabrication and characterization of hierarchical porous Ni2+ doped hydroxyapatite microspheres and their enhanced protein adsorption capacity [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 238-247. |
[6] | Minxia Liu, Dang Wu, Dongling Qin, Gang Yang. Spray-drying assisted layer-structured H2TiO3 ion sieve synthesis and lithium adsorption performance [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 258-267. |
[7] | Tao Sun, Mingjun Pang, Yang Fei. Numerical study on hydrodynamic characteristics of spherical bubble contaminated by surfactants under higher Reynolds numbers [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 268-283. |
[8] | Jingsi Cui, Huanxi Xu, Yanfeng Ding, Jingjing Tian, Xu Zhang, Guanping Jin. Recovery of lithium using H4Mn3.5Ti1.5O12/reduced graphene oxide/polyacrylamide composite hydrogel from brine by Ads-ESIX process [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 20-28. |
[9] | Zhengguo Xu, Xiaochong Wang, Shuying Sun. Performance of a synthetic resin for lithium adsorption in waste liquid of extracting aluminum from fly-ash [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 115-123. |
[10] | Younki Cho, Ryan Lo, Keerthana Krishnan, Xiaolong Yin, Hossein Kazemi. Measuring absolute adsorption in porous rocks using oscillatory motions of a spring-mass system [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 131-139. |
[11] | Xinyu Chen, Shuo Shi, Ximei Han, Min Li, Ying Nian, Jing Sun, Wentao Zhang, Tianli Yue, Jianlong Wang. Insights into high-efficient removal of tetracycline by a codoped mesoporous carbon adsorbent [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 148-156. |
[12] | Feng Guo, Zhihao Chen, Xiliu Huang, Longwen Cao, Xiaofang Cheng, Weilong Shi, Lizhuang Chen. Ternary Ni2P/Bi2MoO6/g-C3N4 composite with Z-scheme electron transfer path for enhanced removal broad-spectrum antibiotics by the synergistic effect of adsorption and photocatalysis [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 157-168. |
[13] | Iman Farirzadeh, Majid Riahi Samani, Davood Toghraie. Lead removal from aqueous medium using fruit peels and polyaniline composites in aqueous and non-aqueous solvents in the presence of polyethylene glycol [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 253-259. |
[14] | Xiaocui Sun, Xue Liu, Guang-Rong Zhao. Separation of salidroside from the fermentation broth of engineered Escherichia coli using macroporous adsorbent resins [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 260-267. |
[15] | Danlong Li, Yannan Liang, Hainan Wang, Ruoqian Zhou, Xiaokang Yan, Lijun Wang, Haijun Zhang. Investigation on the effects of fluid intensification based preconditioning process on the decarburization enhancement of fly ash [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 275-283. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||