[1] Q.J. Guo, Y. Cheng, Y.Z. Liu, W.H. Jia, H.J. Ryu, Coal chemical looping gasification for syngas generation using an iron-based oxygen carrier, Ind. Eng. Chem. Res. 53(1) (2013) 78-86. [2] J. Yang, L.P. Ma, S.L. Dong, H. Liu, S.Q. Zhao, X.J. Cui, D.L. Zheng, J. Yang, Theoretical and experimental demonstration of lignite chemical looping gasification of phosphogypsum oxygen carrier for syngas generation, Fuel 194(2017) 448-459. [3] P. Gayan, C.R. Forero, A. Abad, L.F.D. Diego, F. Garcia-Labiano, J. Adanez, Effect of Support on the behavior of Cu-based oxygen carriers during long-term CLC operation at temperatures above 1073 K, Energy Fuels 25(3) (2011) 1316-1326. [4] P. Cho, T. Mattisson, A. Lyngfelt, Comparison of iron-, nickel-, copper- and manganese-based oxygen carriers for chemical-looping combustion, Fuel 83(9) (2004) 1215-1225. [5] R. Siriwardane, J. Riley, H.J. Tian, G. Richards, Chemical looping coal gasification with calcium ferrite and barium ferrite via solid-solid reactions, Appl. Energy 165(2016) 952-966. [6] T. Song, M. Zheng, L.H. Shen, T. Zhang, J. Xiao, Mechanism investigation of enhancing reaction performance with CaSO4/Fe2O3 oxygen carrier in chemicallooping combustion of coal, Ind. Eng. Chem. Res. 52(11) (2013) 4059-4071. [7] O. Hentati, N. Abrantes, A.L. Caetano, S. Bouguerra, F. Goncalves, J. Roembke, R. Pereira, Phosphogypsum as a soil fertilizer:Ecotoxicity of amended soil and elutriates to bacteria, invertebrates, algae and plants, J. Hazard. Mater. 294(2015) 80-89. [8] J. Zhou, Z. Sheng, T.T. Li, Z. Shu, Y. Chen, Y.X. Wang, Preparation of hardened tiles from waste phosphogypsum by a new intermittent pressing hydration, Ceram. Int. 42(6) (2016) 7237-7245. [9] H.J. Tian, Q.J. Guo, X.H. Yue, Y.Z. Liu, Investigation into sulfur release in reductive decomposition of calcium sulfate oxygen carrier by hydrogen and carbon monoxide, Fuel Process. Technol. 91(11) (2014) 1640-1649. [10] L.H. Shen, M. Zheng, J. Xiao, R. Xiao, A mechanistic investigation of a calciumbased oxygen carrier for chemical looping combustion, Combust. Flame 154(3) (2008) 489-506. [11] S. Zhang, L. Shen, J. Xiao, H. Gu, T. Song, Influence of alkaline earth metals of Ca loaded on iron ore in chemical-looping combustion of coal, Proc. Chin. Soc. Electr. Eng. 33(2) (2013) 39-45. [12] Y.Z. Liu, Q.J. Guo, Investigation into syngas generation from solid fuel using CaSO4-based chemical looping gasification process, Chin. J. Chem. Eng. 21(2) (2013) 127-134. [13] J. Yang, L.P. Ma, H.P. Liu, Y. Wei, Bounkhong, Thermodynamics and kinetics analysis of Ca-looping for CO2 capture:Application of carbide slag, Fuel 242(2019) 1-11. [14] L.R. Radovic, P.L. Walker, R.G. Jenkins, Importance of catalyst dispersion in the gasification of lignite chars, J. Catal. 82(2) (1983) 382-394. [15] A. Lyngfelt, B. Kronberger, J. Adanez, J.X. Morin, The Grace Project:Development of Oxygen Carrier Particles for Chemical-Looping Combustion. Design and Operation of a 10 kW Chemical-Looping Combustor, Elsevier, Canada, 2004. [16] T.D. Wheelock, Simultaneous reductive and oxidative decomposition of calcium sulfate in the same fluidized bed, US Pat., 4102989(1978). [17] W.M. Swift, T.D. Wheelock, Decomposition of calcium sulfate in a two-zone reactor, Ind. Eng. Chem. Res. 14(3) (1975) 323-327. [18] C.A. Strydom, E.M. Groenewald, J.H. Potgieter, Thermogravimetric studies of the synthesis of cas from gypsum, CaSO4·2H2O and phosphogypsum, J. Therm. Anal. Calorim. 49(3) (1997) 1501-1507. [19] J. Werther, Fluidization technology development-the industry/academia collaboration issue, Powder Technol. 113(3) (2000) 230-241. [20] S. Heinrich, J. Werther, New developments in fluidization technology, Chem. Eng. Technol. 32(3) (2010) 337. [21] Z.Y. Deng, R. Xiao, B.S. Jin, Q. Song, Numerical simulation of chemical looping combustion process with CaSO4 oxygen carrier, Int. J. Greenh. Gas Control 3(4) (2009) 368-375. [22] D. Ik-Tae, A. Guk, M. Hamada, A study on wall-to-bed heat transfer in a conical fluidized bed combustor, Appl. Therm. Eng. 99(2016) 928-937. [23] L.M. Armstrong, S. Gu, K.H. Luo, Study of wall-to-bed heat transfer in a bubbling fluidised bed using the kinetic theory of granular flow, Int. J. Heat Mass Transf. 53(21) (2010) 4949-4959. [24] T.N. Zhang, X.B. Dong, Y.J. Lu, Bed to wall heat transfer in supercritical water fluidized bed:Comparison with the gas-solid fluidized bed, Appl. Therm. Eng. 88(2015) 297-305. [25] M. Mostafazadeh, H. Rahimzadeh, M. Hamzei, Numerical analysis of the mixing process in a gas-solid fluidized bed reactor, Powder Technol. 239(2013) 422-433. [26] C.K.K. Lun, S.B. Savage, D.J. Jeffrey, N. Chepurniy, Kinetic theories for granular flow:inelastic particles in Couette flow and slightly inelastic particles in a general flow field, J. Fluid Mech. 140(1984) 223-256. [27] D.J. Ajcevic, E. Siegmann, C. Radeke, J.G. Khinast, Large-scale CFD-DEM simulations of fluidized granular systems, Chem. Eng. Sci. 98(2013) 298-310. [28] J.H. Walther, I.F. Sbalzarini, Large-scale parallel discrete element simulations of granular flow, Eng. Comput. 26(6) (2009) 688-697. [29] S.L. Yang, K. Luo, K. Zhang, K.Z. Qiu, J.R. Fan, Numerical study of a lab-scale double slot-rectangular spouted bed with the parallel CFD-DEM coupling approach, Powder Technol. 272(2015) 85-99. [30] R. Beetstra, M.A.V.D. Hoef, J.A.M. Kuipers, Numerical study of segregation using a new drag force correlation for polydisperse systems derived from latticeBoltzmann simulations, Chem. Eng. Sci. 62(1-2) (2007) 246-255. [31] R.J. Hill, D.L. Koch, A.J.C. Ladd, The first effects of fluid inertia on flows in ordered and random arrays of spheres, J. Fluid Mech. 448(2001) 213-241. [32] M. Zheng, L.H. Shen, J. Xiao, Reduction of CaSO4 oxygen carrier with coal in chemical-looping combustion:Effects of temperature and gasification intermediate, Int. J. Greenh. Gas Control 4(5) (2010) 716-728. [33] D.J. Gunn, Transfer of heat or mass to particles in fixed and fluidised beds, Int. J. Heat Mass Transf. 21(4) (1978) 467-476. [34] Q. Zafar, A. Abad, T. Mattisson, B. Gevert, Reaction kinetics of freeze-granulated NiO/MgAl2O4 oxygen carrier particles for chemical-looping combustion, Energy Fuels 21(2) (2007) 610-618. [35] M. Syamlal, T.J. O'Brien, Simulation of granular layer inversion in liquid fluidized beds, Int. J. Multiph. Flow 14(4) (1988) 473-481. [36] Q.L. Song, R. Xiao, Z.Y. Deng, H.Y. Zhang, L. Shen, J. Xiao, M.Y. Zhang, Chemicallooping combustion of methane with CaSO4 oxygen carrier in a fixed bed reactor, Energy Conv. Manag. 49(11) (2008) 3178-3187. [37] L. Xu, J.N. Wang, Z.S. Li, N.S. Cai, Experimental study of cement-supported CuO oxygen carriers in chemical looping with oxygen uncoupling (CLOU), Energy Fuels 27(3) (2013) 1522-1530. [38] M.A.S. Pio, M. Martini, F. Gallucci, I. Roghair, M.V.S. Annaland, Kinetics of CuO/SiO2 and CuO/Al2O3 oxygen carriers for chemical looping combustion, Chem. Eng. Sci. 175(2018) 56-71. [39] T. Yonehara, H.I. Smith, C.V. Thompson, J.E. Palmer, Graphoepitaxy of Ge on SiO2 by solid-state surface-energy-driven grain growth, Appl. Phys. Lett. 45(6) (1984) 631-633. [40] Y.L. Yang, N. Guo, In situ fabrication and wettability of Ca2SiO4/CaTiO3 biocoating by laser cladding technology on Ti-6Al-4V alloy, Mater. Sci. Technol. 29(5) (2013) 598-604. [41] T.T. Fang, W.J. Lin, C.Y. Lin, Evidence of the ultrahigh dielectric constant of CaSiO3-doped CaCu3Ti4O12 from its dielectric response, impedance spectroscopy, and microstructure, Phys. Rev. B 76(4) (2007) 45115. [42] S.A. Scott, J.S. Dennis, A.N. Hayhurst, T. Brown, In situ gasification of a solid fuel and CO2 separation using chemical looping, AIChE J. 52(9) (2006) 3325-3328. |