Chinese Journal of Chemical Engineering ›› 2021, Vol. 38 ›› Issue (10): 123-131.DOI: 10.1016/j.cjche.2021.02.012
• Catalysis, Kinetics and Reaction Engineering • Previous Articles Next Articles
Atif Abdalazeez1,2, Wenju Wang1, Siddig Abuelgasim1,2
Received:
2020-04-07
Revised:
2020-12-20
Online:
2021-12-02
Published:
2021-10-28
Contact:
Wenju Wang
Supported by:
Atif Abdalazeez1,2, Wenju Wang1, Siddig Abuelgasim1,2
通讯作者:
Wenju Wang
基金资助:
Atif Abdalazeez, Wenju Wang, Siddig Abuelgasim. Syngas production from chemical looping reforming of ethanol over iron-based oxygen carriers: Theoretical analysis and experimental investigation[J]. Chinese Journal of Chemical Engineering, 2021, 38(10): 123-131.
Atif Abdalazeez, Wenju Wang, Siddig Abuelgasim. Syngas production from chemical looping reforming of ethanol over iron-based oxygen carriers: Theoretical analysis and experimental investigation[J]. 中国化学工程学报, 2021, 38(10): 123-131.
[1] A. Abdalazeez, T.L. Li, W.J. Wang, S. Abuelgasim, A brief review of CO2 utilization for alkali carbonate gasification and biomass/coal co-gasification: Reactivity, products and process, J. CO 43 (2021) 101370 [2] Y.C. Wei, W.J. Cai, S.J. Deng, Z.C. Li, H. Yu, S.Y. Zhang, Z.H. Yu, L. Cui, F.Z. Qu, Efficient syngas production via dry reforming of renewable ethanol over Ni/KIT-6 nanocatalysts, Renew. Energy 145 (2020) 1507-1516 [3] L.J. Wang, C.L. Weller, D.D. Jones, M.A. Hanna, Contemporary issues in thermal gasification of biomass and its application to electricity and fuel production, Biomass Bioenergy 32 (7) (2008) 573-581 [4] K. Cheng, L. Zhang, J.C. Kang, X.B. Peng, Q.H. Zhang, Y. Wang, Selective transformation of syngas into gasoline-range hydrocarbons over mesoporous H-ZSM-5-supported cobalt nanoparticles, Chemistry 21 (5) (2015) 1928-1937 [5] R.G.D. Santos, A.C. Alencar, Biomass-derived syngas production via gasification process and its catalytic conversion into fuels by fischer tropsch synthesis: A review, Int. J. Hydrog. Energy 45 (36) (2020) 18114-18132 [6] R.Y. Chein, W.H. Hsu, Thermodynamic analysis of syngas production via chemical looping dry reforming of methane, Energy 180 (2019) 535-547 [7] D.J. Wilhelm, D.R. Simbeck, A.D. Karp, R.L. Dickenson, Syngas production for gas-to-liquids applications: Technologies, issues and outlook, Fuel Process. Technol. 71 (1-3) (2001) 139-148 [8] Z. Ming, Y. Cui, J.C. Sun, Q.W. Zhang, Modified iron catalyst for direct synthesis of light olefin from syngas, Catal. Today 316 (2018) 142-148 [9] W.J. Wang, Y.Q. Wang, Steam reforming of ethanol to hydrogen over nickel metal catalysts, Int. J. Energy Res. 34 (14) (2010) 1285-1290 [10] M. Cobo, D. Pieruccini, R. Abello, L. Ariza, L.F. Córdoba, J.A. Conesa, Steam reforming of ethanol over bimetallic RhPt/La2O3: Long-term stability under favorable reaction conditions, Int. J. Hydrog. Energy 38 (14) (2013) 5580-5593 [11] W.J. Wang, Y.Q. Wang, Thermodynamic analysis of hydrogen production via partial oxidation of ethanol, Int. J. Hydrog. Energy 33 (19) (2008) 5035-5044 [12] Z.W. Xue, Y.S. Shen, P.W. Li, Y.C. Pan, J.J. Li, Z.L. Feng, Y. Zhang, Y.W. Zeng, Y.L. Liu, S.M. Zhu, Promoting effects of lanthanum oxide on the NiO/CeO2 catalyst for hydrogen production by autothermal reforming of ethanol, Catal. Commun. 108 (2018) 12-16 [13] M.B. Bahari, N.H.H. Phuc, B. Abdullah, F. Alenazey, D.V.N. Vo, Ethanol dry reforming for syngas production over Ce-promoted Ni/Al2O3 catalyst, J. Environ. Chem. Eng. 4 (4) (2016) 4830-4838 [14] J. Adanez, A. Abad, F. Garcia-Labiano, P. Gayan, L.F. de Diego, Progress in chemical-looping combustion and reforming technologies, Prog. Energy Combust. Sci. 38 (2) (2012) 215-282 [15] M. Rydén, A. Lyngfelt, T. Mattisson, Chemical-looping combustion and chemical-looping reforming in a circulating fluidized-bed reactor using Ni-based oxygen carriers, Energy Fuels 22 (4) (2008) 2585-2597 [16] M. Rydén, A. Lyngfelt, T. Mattisson, Synthesis gas generation by chemical-looping reforming in a continuously operating laboratory reactor, Fuel 85 (12-13) (2006) 1631-1641 [17] T. Pröll, J. Bolhàr-Nordenkampf, P. Kolbitsch, H. Hofbauer, Syngas and a separate nitrogen/argon stream via chemical looping reforming—A 140 kW pilot plant study, Fuel 89 (6) (2010) 1249-1256 [18] L.F. de Diego, M. Ortiz, J. Adánez, F. García-Labiano, A. Abad, P. Gayán, Synthesis gas generation by chemical-looping reforming in a batch fluidized bed reactor using Ni-based oxygen carriers, Chem. Eng. J. 144 (2) (2008) 289-298 [19] F. He, Y.G. Wei, H.B. Li, H. Wang, Synthesis gas generation by chemical-looping reforming using Ce-based oxygen carriers modified with Fe, Cu, and Mn oxides, 23 (4) (2009) 2095-2102 [20] S. Wang, B.W. Li, Y.X. Tang, Y.R. He, Thermodynamic assessment of membrane-assisted chemical looping reforming of glycerol, Chem. Eng. Process. Process. Intensif. 142 (2019) 107564 [21] J. Chen, K. Zhao, Z.L. Zhao, F. He, Z. Huang, G.Q. Wei, Identifying the roles of MFe2O4 (M=Cu, Ba, Ni, and Co) in the chemical looping reforming of char, pyrolysis gas and tar resulting from biomass pyrolysis, Int. J. Hydrog. Energy 44 (10) (2019) 4674-4687 [22] T. Nimmas, S. Wongsakulphasatch, C. Kui Cheng, S. Assabumrungrat, Bi-metallic CuO-NiO based multifunctional material for hydrogen production from sorption-enhanced chemical looping autothermal reforming of ethanol, Chem. Eng. J. 398 (2020) 125543 [23] S. Isarapakdeetham, P. Kim-Lohsoontorn, S. Wongsakulphasatch, W. Kiatkittipong, N. Laosiripojana, J.L. Gong, S. Assabumrungrat, Hydrogen production via chemical looping steam reforming of ethanol by Ni-based oxygen carriers supported on CeO2 and La2O3 promoted Al2O3, Int. J. Hydrog. Energy 45 (3) (2020) 1477-1491 [24] E. García-Díez, F. García-Labiano, L.F. de Diego, A. Abad, P. Gayán, J. Adánez, J.A.C. Ruíz, Optimization of hydrogen production with CO2 capture by autothermal chemical-looping reforming using different bioethanol purities, Appl. Energy 169 (2016) 491-498 [25] G.R. Kale, B.D. Kulkarni, K.V. Bharadwaj, Chemical looping reforming of ethanol for syngas generation: a theoretical investigation, Int. J. Energy Res. 37 (6) (2013) 645-656 [26] A. López Ortiz, M. Meléndez Zaragoza, V. Collins-Martínez, Thermodynamic analysis of the ethanol chemical looping autothermal reforming with CO2 capture, Int. J. Hydrog. Energy 40 (48) (2015) 17180-17191 [27] W.J. Wang, Thermodynamic and experimental aspects on chemical looping reforming of ethanol for hydrogen production using a Cu-based oxygen carrier, Int. J. Energy Res. 38 (9) (2014) 1192-1200 [28] W. Qin, J.Y. Wang, L.X. Luo, L. Liu, X.B. Xiao, Z.M. Zheng, S. Sun, X.Y. Hu, C.Q. Dong, Chemical looping reforming of ethanol-containing organic wastewater for high ratio H2/CO syngas with iron-based oxygen carrier, Int. J. Hydrog. Energy 43 (29) (2018) 12985-12998 [29] Z.L. Yu, Y.Y. Yang, S. Yang, Q. Zhang, J.T. Zhao, Y.T. Fang, X.G. Hao, G.Q. Guan, Iron-based oxygen carriers in chemical looping conversions: a review, Carbon Resour. Convers. 2 (1) (2019) 23-34 [30] H.S. Chen, Z. Zheng, Z.W. Chen, X.T. Bi, Reduction of hematite (Fe2O3) to metallic iron (Fe) by CO in a micro fluidized bed reaction analyzer: A multistep kinetics study, Powder Technol. 316 (2017) 410-420 [31] S. Abuelgasim, W.J. Wang, A. Abdalazeez, A brief review for chemical looping combustion as a promising CO2 capture technology: Fundamentals and progress, Sci Total Environ 764 (2021) 142892 [32] C.Q. Lu, K.Z. Li, X. Zhu, Y.G. Wei, L. Li, M. Zheng, B.B. Fan, F. He, H. Wang, Improved activity of magnetite oxygen carrier for chemical looping steam reforming by ultrasonic treatment, Appl. Energy 261 (2020) 114437 [33] C.Q. Lu, K.Z. Li, H. Wang, X. Zhu, Y.G. Wei, M. Zheng, C.H. Zeng, Chemical looping reforming of methane using magnetite as oxygen carrier: Structure evolution and reduction kinetics, Appl. Energy 211 (2018) 1-14 [34] V. Shah, Z. Cheng, D.S. Baser, J.A. Fan, L.S. Fan, Highly selective production of syngas from chemical looping reforming of methane with CO2 utilization on MgO-supported calcium ferrite redox materials, Appl. Energy 282 (2021) 116111 [35] T.T. Xu, B. Xiao, G. Gladson Moyo, F.H. Li, Z.H. Chen, X. Wang, Z.Q. Hu, S.M. Liu, M. Hu, Syngas production via chemical looping reforming biomass pyrolysis oil using NiO/dolomite as oxygen carrier, catalyst or sorbent, Energy Convers. Manag. 198 (2019) 111835 [36] S.G. Nadgouda, M.Q. Guo, A. Tong, L.S. Fan, High purity syngas and hydrogen coproduction using copper-iron oxygen carriers in chemical looping reforming process, Appl. Energy 235 (2019) 1415-1426 [37] V.V. Galvita, H. Poelman, V. Bliznuk, C. Detavernier, G.B. Marin, CeO2-modified Fe2O3 for CO2 utilization via chemical looping, Ind. Eng. Chem. Res. 52 (25) (2013) 8416-8426 [38] W. Wang, Y. Cao, Y. Wang, Natural gas fuelled chemical looping reforming with carbon dioxide capture technology for hydrogen generation: Thermodynamic investigation, J. Energy Inst. 84 (2) (2011) 94-101 [39] W.J. Wang, Hydrogen production via sorption enhanced chemical looping reforming of glycerol using Ni-based oxygen carrier and Ca-based sorbent: Theoretical and experimental study, Korean J. Chem. Eng. 31 (2) (2014) 230-239 [40] J. Liu, W.L. Shen, D.M. Cui, J. Yu, F.B. Su, G.W. Xu, Syngas methanation for substitute natural gas over Ni-Mg/Al2O3 catalyst in fixed and fluidized bed reactors, Catal. Commun. 38 (2013) 35-39 [41] T. Mattisson, M. Johansson, A. Lyngfelt, The use of NiO as an oxygen carrier in chemical-looping combustion, Fuel 85 (5-6) (2006) 736-747 [42] B.M. Corbella, L. De Diego, F. García, J. Adánez, J.M. Palacios, The performance in a fixed bed reactor of copper-based oxides on titania as oxygen carriers for chemical looping combustion of methane, Energy Fuels 19 (2) (2005) 433-441 [43] S.Y. Hosseini, M.R. Khosravi-Nikou, A. Shariati, Production of hydrogen and syngas using chemical looping technology via cerium-iron mixed oxides, Chem. Eng. Process. - Process. Intensif. 139 (2019) 23-33 [44] X. Zhu, Y.G. Wei, H. Wang, K.Z. Li, Ce-Fe oxygen carriers for chemical-looping steam methane reforming, Int. J. Hydrog. Energy 38 (11) (2013) 4492-4501 [45] B.L. Hou, H.Y. Zhang, H.Z. Li, Q.S. Zhu, Study on kinetics of iron oxide reduction by hydrogen, Chin. J. Chem. Eng. 20 (1) (2012) 10-17 [46] J.L. Pinilla, R. Utrilla, R.K. Karn, I. Suelves, M.J. Lázaro, R. Moliner, A.B. García, J.N. Rouzaud, High temperature iron-based catalysts for hydrogen and nanostructured carbon production by methane decomposition, Int. J. Hydrog. Energy 36 (13) (2011) 7832-7843 [47] E.R. Monazam, R.W. Breault, R. Siriwardane, Reduction of hematite (Fe2O3) to wüstite (FeO) by carbon monoxide (CO) for chemical looping combustion, Chem. Eng. J. 242 (2014) 204-210 [48] M. Kawanari, A. Matsumoto, R. Ashida, K. Miura, Enhancement of reduction rate of iron ore by utilizing iron ore/carbon composite consisting of fine iron ore particles and highly thermoplastic carbon material, ISIJ Int. 51 (8) (2011) 1227-1233 [49] W.R. Kang, K.B. Lee, Effect of operating parameters on methanation reaction for the production of synthetic natural gas, Korean J. Chem. Eng. 30 (7) (2013) 1386-1394 [50] Experimental and theoretical study of the interactions between Fe2O3/Al2O3 and CO, Energies 10 (5) (2017) 598. [51] Y. De Vos, M. Jacobs, P. van der Voort, I. van Driessche, F. Snijkers, A. Verberckmoes, Sustainable iron-based oxygen carriers for Chemical Looping for Hydrogen Generation, Int. J. Hydrog. Energy 44 (3) (2019) 1374-1391 [52] M. Zhu, S.Y. Chen, S.W. Ma, W.G. Xiang, Carbon formation on iron-based oxygen carriers during CH4 reduction period in Chemical Looping Hydrogen Generation process, Chem. Eng. J. 325 (2017) 322-331 [53] J. Hu, S.Y. Chen, W.G. Xiang, Sintering and agglomeration of Fe2O3-MgAl2O4 oxygen carriers with different Fe2O3 loadings in chemical looping processes, Fuel 265 (2020) 116983 [54] J.H. Bao, L.Y. Chen, F. Liu, Z. Fan, H.S. Nikolic, K.L. Liu, Evaluating the effect of inert supports and alkali sodium on the performance of red mud oxygen carrier in chemical looping combustion, Ind. Eng. Chem. Res. 55 (29) (2016) 8046-8057 |
[1] | Tingjun Fu, Ran Wang, Kun Ren, Liangliang Zhang, Zhong Li. Intensified shape selectivity and alkylation reaction for the two-step conversion of methanol aromatization to p-xylene [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 240-250. |
[2] | Yi Wu, Pengfei Song, Ningyan Li, Yanan Jiang, Yuan Liu. Molybdenum tailored Co0/Co2+ active pairs on a perovskite-type oxide for direct ethanol synthesis from syngas [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 279-289. |
[3] | Pengcheng Zou, Kai Wang. Methanolysis of amides under high-temperature and high-pressure conditions with a continuous tubular reactor [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 170-178. |
[4] | Jiaxin Wu, Chenxiao Wang, Xianliang Meng, Haichen Liu, Ruizhi Chu, Guoguang Wu, Weisong Li, Xiaofeng Jiang, Deguang Yang. Enhancement of catalytic and anti-carbon deposition performance of SAPO-34/ZSM-5/quartz films in MTA reaction by Si/Al ratio regulation [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 314-324. |
[5] | Xinhai Zhou, Dawei Zhou, Xinhui Bao, Yang Zhang, Jie Zhou, Fengxue Xin, Wenming Zhang, Xiujuan Qian, Weiliang Dong, Min Jiang, Katrin Ochsenreither. Production of palmitoleic acid by oleaginous yeast Scheffersomyces segobiensis DSM 27193 using systematic dissolved oxygen regulation strategy [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 324-331. |
[6] | Xing Su, Ning Qiao, Bao-Chang Sun. A route for the study on mass transfer enhancement by adding particles in liquid phase [J]. Chinese Journal of Chemical Engineering, 2022, 48(8): 158-165. |
[7] | Siyue Ren, Xiao Feng. Emergy evaluation of aromatics production from methanol and naphtha [J]. Chinese Journal of Chemical Engineering, 2022, 46(6): 134-141. |
[8] | Xiangjun Li, Shujun Li, Xiaoping Wang, Muhammad Asif Nawaz, Dianhua Liu. Polyoxymethylene dimethyl ethers synthesis from methanol and formaldehyde solution over one-pot synthesized spherical mesoporous sulfated zirconia [J]. Chinese Journal of Chemical Engineering, 2022, 46(6): 161-172. |
[9] | Lijuan He, Cuimei Zhi, Lixia Ling, Riguang Zhang, Baojun Wang. Syngas to ethanol on MoCu(2 1 1) surface: Effect of promoter Mo on C—O bond breaking and C—C bond formation [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 78-89. |
[10] | Xiao Zhao, Xuan Shi, Zhongshun Chen, Long Xu, Chengyi Dai, Yazhou Zhang, Xinwen Guo, Dongyuan Yang, Xiaoxun Ma. Efficient conversion of benzene and syngas to toluene and xylene over ZnO-ZrO2&H-ZSM-5 bifunctional catalysts [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 203-210. |
[11] | Youwei Yang, Jingyu Zhang, Yueqi Gao, Busha Assaba Fayisa, Antai Li, Shouying Huang, Jing Lv, Yue Wang, Xinbin Ma. Highly dispersed nickel boosts catalysis by Cu/SiO2 in the hydrogenation of CO2-derived ethylene carbonate to methanol and ethylene glycol [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 77-85. |
[12] | Yihan Yin, Aoqian Qiu, Hongxia Gao, Yanqing Na, Zhiwu Liang. Experimental study of the mass transfer behavior of carbon dioxide absorption into ternary phase change solution in a packed tower [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 135-142. |
[13] | Wanqiao Liang, Jihuan Huang, Penny Xiao, Ranjeet Singh, Jining Guo, Leila Dehdari, Gang Kevin Li. Amine-immobilized HY zeolite for CO2 capture from hot flue gas [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 335-342. |
[14] | Xia Zhan, Xueying Zhao, Zhongyong Gao, Rui Ge, Juan Lu, Luying Wang, Jiding Li. Breakthroughs on tailoring membrane materials for ethanol recovery by pervaporation [J]. Chinese Journal of Chemical Engineering, 2022, 52(12): 19-36. |
[15] | Busha Assaba Fayisa, Yushan Xi, Youwei Yang, Yueqi Gao, Antai Li, Mei-Yan Wang, Jing Lv, Shouying Huang, Yue Wang, Xinbin Ma. Pt-modulated Cu/SiO2 catalysts for efficient hydrogenation of CO2-derived ethylene carbonate to methanol and ethylene glycol [J]. Chinese Journal of Chemical Engineering, 2022, 41(1): 366-373. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 38
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 214
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||