Chinese Journal of Chemical Engineering ›› 2021, Vol. 38 ›› Issue (10): 255-265.DOI: 10.1016/j.cjche.2020.09.011
Previous Articles Next Articles
Hossein Beyrami
Received:
2020-06-02
Revised:
2020-09-03
Online:
2021-12-02
Published:
2021-10-28
Contact:
Hossein Beyrami
Hossein Beyrami
通讯作者:
Hossein Beyrami
Hossein Beyrami. Effect of different treatments on electrokinetic remediation of Zn, Pb and Cd from a contaminated calcareous soil[J]. Chinese Journal of Chemical Engineering, 2021, 38(10): 255-265.
Hossein Beyrami. Effect of different treatments on electrokinetic remediation of Zn, Pb and Cd from a contaminated calcareous soil[J]. 中国化学工程学报, 2021, 38(10): 255-265.
[1] K. Baek, D.H. Kim, S.W. Park, B.G. Ryu, T. Bajargal, J.S. Yang, Electrolyte conditioning-enhanced electrokinetic remediation of arsenic-contaminated mine tailing, J. Hazard. Mater. 161 (2009) 457-462 [2] Darmawan, S.I. Wada, Effect of clay mineralogy on the feasibility of electrokinetic soil decontamination technology, Appl. Clay Sci. 20 (2002) 283-293 [3] C. Cameselle, S. Gouveia, Electrokinetic remediation for the removal of organic contaminants in soils, Curr. Opin. Electrochem. 11 (2018) 41-47 [4] D.H. Kim, C.S. Jeon, K. Baek, S.H. Ko, J.S. Yang, Electrokinetic remediation of fluorine-contaminated soil: conditioning of anolyte, J. Hazard. Mater. 161 (2009) 565-569 [5] X. Yang, M. Zhou, L. Cang, Q. Ji, J. Xie, Enhanced electrokinetic remediation of heavy-metals contaminated soil in presence tetrasodium N, N-bis(carboxymethyl) glutamic acid (GLDA) as chelator, Int. J. Electrochem. Sci. 15 (2020) 696-709 [6] C. Cameselle, S. Gouveia, A. Cabo, Analysis and optimization of Mn removal from contaminated solid matrixes by electrokinetic remediation, Int. J. Environ. Res. Public Health 17 (2020) 1820 [7] A.I.A. Chowdhury, J.I. Gerhard, D. Reynolds, B.E. Sleep, D.M. O’Carroll, Electrokinetic-enhanced permanganate delivery and remediation of contaminated low permeability porous media, Water Res. 113 (2017) 215-222 [8] R. Fu, D. Wen, X. Xia, W. Zhang, Y. Gu, Electrokinetic remediation of chromium (Cr)-contaminated soil with citric acid (CA) and polyaspartic acid (PASP) as electrolytes, Chem. Eng. J. 316 (2017) 601-608 [9] X. Yu, F. Muhammad, Y. Yan, L. Yu, H. Li, X. Huang, B. Jiao, N. Lu, D. Li, Effect of chemical additives on electrokinetic remediation of Cr-contaminated soil coupled with a permeable reactive barrier, R. Soc. Open Sci. 6 (2019) 182138 [10] M. Ravera, C. Ciccarelli, D. Gastaldi, C. Rinaudo, C. Castelli, D. Osella, An experiment in the electrokinetic removal of copper from soil contaminated by the brass industry, Chemosphere 63 (2006) 950-955 [11] A.Z. Al-Hamdan, K.R. Reddy, Transient behavior of heavy metals in soils during electrokinetic remediation, Chemosphere 71 (2008) 860-871 [12] P. Guedes, V. Lopes, N. Couto, E.P. Mateus, C.S. Pereira, A.B. Ribeiro, Electrokinetic remediation of contaminants of emergent concern in clay soil: Effect of operating parameters, Environ. Pollut. 253 (2019) 625-635 [13] D. Turer, A. Genc, Assessing effect of electrode configuration on the efficiency of electrokinetic remediation by sequential extraction analysis, J. Hazard. Mater. 119 (2005) 167-174 [14] N. Zhu, M. Chen, X. Guo, G. Hu, Electrokinetic removal of Cu and Zn in anaerobic digestate: interrelation between metal speciation and electrokinetic treatments, J. Hazard. Mater. 286 (2015) 118-126 [15] Sh. Shahmohammadi-Kalalagh, H. Beyrami, F. Ahmadzadeh, Electrokinetic remediation of Cd contaminated soil at field condition, in: 15th Int, Conf. Environ. Sci. Technol., Rhodes, Greece [16] K. Popov, I. Glazkova, V. Yachmenev, A. Nikolayev, Electrokinetic remediation of concrete: effect of chelating agents, Environ. Pollut. 153 (2008) 22-28 [17] M.V. Vázquez, D.A. Vasco, F. Hernández-Luis, D. Grandoso, M. Lemus, D.M. Benjumea, C.D. Arbelo, Electrokinetic study of the buffer capacity of some soils from Tenerife.: comparison with a volumetric technique, Geoderma 148 (2009) 261-266 [18] H.H. Lee, J.W. Yang, A new method to control electrolytes pH by circulation system in electrokinetic soil remediation, J. Hazard. Mater. 77 (2000) 227-240 [19] P.R. Buchireddy, R.M. Bricka, D.B. Gent, Electrokinetic remediation of wood preservative contaminated soil containing copper, chromium, and arsenic, J. Hazard. Mater. 162 (2009) 490-497 [20] J.H. Chang, C.D. Dong, S.Y. Shen, The lead contaminated land treated by the circulation-enhanced electrokinetics and phytoremediation in field scale, J. Hazard. Mater. 368 (2019) 894-898 [21] K.R. Reddy, S. Danda, R.E. Saichek, Complicating factors of using ethylenediamine tetraacetic acid to enhance electrokinetic remediation of multiple heavy metals in clayey soils, J. Environ. Eng. 130 (2004) 1357-1366 [22] J.Y. Wang, X.J. Huang, J.C.M. Kao, O. Stabnikova, Simultaneous removal of organic contaminants and heavy metals from kaolin using an upward electrokinetic soil remediation process, J. Hazard. Mater. 144 (2007) 292-299 [23] S.O. Kim, S.H. Moon, K.W. Kim, Removal of heavy metals from soils using enhanced electrokinetic soil processing, Water Air Soil Pollut. 125 (2001) 259-272 [24] A. Giannis, E. Gidarakos, A. Skouta, Transport of cadmium and assessment of phytotoxicity after electrokinetic remediation, J. Environ. Manage. 86 (2008) 535-544 [25] R.E. Saichek, K.R. Reddy, Effect of pH control at the anode for the electrokinetic removal of phenanthrene from kaolin soil, Chemosphere 51 (2003) 273-287 [26] S. Zhang, J. Zhang, X. Cheng, Y. Mei, C. Hu, M. Wang, J. Li, Electrokinetic remediation of soil containing Cr (VI) by photovoltaic solar panels and a DC-DC converter, J. Chem. Technol. Biotechnol. 90 (2015) 693-700 [27] Y. Yan, F. Xue, F. Muhammad, L. Yu, F. Xu, B. Jiao, Y. Shiau, D. Li, Application of iron-loaded activated carbon electrodes for electrokinetic remediation of chromium-contaminated soil in a three-dimensional electrode system, Sci. Rep. 8 (2018) 1-11 [28] J. Virkutyte, M. Sillanpää, P. Latostenmaa, Electrokinetic soil remediation—critical overview, Sci. Total Environ. 289 (2002) 97-121 [29] Brian J. Alloway, Heavy Metals in Soils, Chapman and Hall, London, UK (1995) [30] G. Sposito, L.J. Lund, A.C. Chang, Trace metal chemistry in arid-zone field soils amended with sewage sludge: I. Fractionation of Ni, Cu, Zn, Cd, and Pb in solid phases, Soil Sci. Soc. Am. J. 46 (1982) 260-264 [31] Y. Gu, A.T. Yeung, H. Li, Enhanced electrokinetic remediation of cadmium-contaminated natural clay using organophosphonates in comparison with EDTA, Chin. J. Chem. Eng. 26 (2018) 1152-1159 [32] C. Yuan, T.-S. Chiang, Enhancement of electrokinetic remediation of arsenic spiked soil by chemical reagents, J. Hazard. Mater. 152 (2008) 309-315 [33] S. Yuan, C. Wu, J. Wan, X. Lu, In situ removal of copper from sediments by a galvanic cell, J. Environ. Manage. 90 (2009) 421-427 [34] A. Altaee, R. Smith, S. Mikhalovsky, The feasibility of decontamination of reduced saline sediments from copper using the electrokinetic process, J. Environ. Manage. 88 (2008) 1611-1618 [35] C. Cameselle, A. Pena, Enhanced electromigration and electro-osmosis for the remediation of an agricultural soil contaminated with multiple heavy metals, Process Saf. Environ. Prot. 104 (2016) 209-217 [36] M. Cherifi, N. Boutemine, D.F. Laefer, S. Hazourli, Effect of sludge pH and treatment time on the electrokinetic removal of aluminum from water potabilization treatment sludge, Comptes Rendus Chim. 19 (2016) 511-516 [37] S. Zhu, D. Han, M. Zhou, Y. Liu, Ammonia enhanced electrokinetics coupled with bamboo charcoal adsorption for remediation of fluorine-contaminated kaolin clay, Electrochim. Acta 198 (2016) 241-248 [38] T. Li, S. Yuan, J. Wan, X. Lu, Hydroxypropyl-β-cyclodextrin enhanced electrokinetic remediation of sediment contaminated with HCB and heavy metals, J. Hazard. Mater. 176 (2010) 306-312 [39] B.G. Ryu, J.S. Yang, D.H. Kim, K. Baek, Pulsed electrokinetic removal of Cd and Zn from fine-grained soil, J. Appl. Electrochem. 40 (2010) 1039-1047 [40] K.J. Kim, D.H. Kim, J.C. Yoo, K. Baek, Electrokinetic extraction of heavy metals from dredged marine sediment, Sep. Purif. Technol. 79 (2011) 164-169 [41] L. Yuan, X. Xu, H. Li, Q. Wang, N. Wang, H. Yu, The influence of macroelements on energy consumption during periodic power electrokinetic remediation of heavy metals contaminated black soil, Electrochim. Acta 235 (2017) 604-612 [42] A. Altin, M. Degirmenci, Lead (II) removal from natural soils by enhanced electrokinetic remediation, Sci. Total Environ. 337 (2005) 1-10 [43] M. Villen-Guzman, A. Garcia-Rubio, J.M. Paz-Garcia, J.M. Rodriguez-Maroto, F. Garcia-Herruzo, C. Vereda-Alonso, C. Gomez-Lahoz, The use of ethylenediaminetetraacetic acid as enhancing agent for the remediation of a lead polluted soil, Electrochim. Acta 181 (2015) 82-89 [44] Y. Xu, C. Zhang, M. Zhao, H. Rong, K. Zhang, Q. Chen, Comparison of bioleaching and electrokinetic remediation processes for removal of heavy metals from wastewater treatment sludge, Chemosphere 168 (2017) 1152-1157 [45] D.M. Zhou, C.F. Deng, A.N. Alshawabkeh, L. Cang, Effects of catholyte conditioning on electrokinetic extraction of copper from mine tailings, Environ. Int. 31 (2005) 885-890 [46] K.R. Reddy, R.E. Saichek, K. Maturi, P. Ala, Effects of soil moisture and heavy metal concentrations on electrokinetic remediation, Indian Geotech. J. 32 (2002) 258-288 [47] S.Y. Shin, S.M. Park, K. Baek, Soil moisture could enhance electrokinetic remediation of arsenic-contaminated soil, Environ. Sci. Pollut. Res. 24 (2017) 98 |
[1] | Sinu Poolachira, Sivasubramanian Velmurugan. Graphene oxide/hydrotalcite modified polyethersulfone nanohybrid membrane for the treatment of lead ion from battery industrial effluent [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 253-261. |
[2] | Chaozhi Zhang, Qianqian Shen, Yanxiao Su, Ruihua Jin. Efficient heavy metal recycling and water reuse from industrial wastewater using new reusable and inexpensive polyphenylene sulfide derivatives [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 89-102. |
[3] | Chao Yang, Zhelin Su, Yeshuang Wang, Huiling Fan, Meisheng Liang, Zhaohui Chen. Insight into the effect of gel drying temperature on the structure and desulfurization performance of ZnO/SiO2 adsorbents [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 233-241. |
[4] | Kamel Hendaoui, Malika Trabelsi-Ayadi, Fadhila Ayari. Optimization of continuous electrocoagulation-adsorption combined process for the treatment of a textile effluent [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 310-320. |
[5] | Di Gao, Yibo Zhi, Liyuan Cao, Liang Zhao, Jinsen Gao, Chunming Xu, Mingzhi Ma, Pengfei Hao. Influence of zinc state on the catalyst properties of Zn/HZSM-5 zeolite in 1-hexene aromatization and cyclohexane dehydrogenation [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 124-134. |
[6] | Xin Li, Song Hong, Leiduan Hao, Zhenyu Sun. Cadmium-based metal-organic frameworks for high-performance electrochemical CO2 reduction to CO over wide potential range [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 143-151. |
[7] | Saeed Nahidi, Iraj Jafari Gavzan, Seyfolah Saedodin, Mahmoud Salari. Experimental investigation on the effect of surface characterization of electrodes on the gas bubble dynamics in electrolyte flow and performance of FLA batteries by using PIV [J]. Chinese Journal of Chemical Engineering, 2021, 33(5): 30-39. |
[8] | Xinling Xie, Xiaona Zhao, Xuan Luo, Tongming Su, Youquan Zhang, Zuzeng Qin, Hongbing Ji. Mechanically activated starch magnetic microspheres for Cd(II) adsorption from aqueous solution [J]. Chinese Journal of Chemical Engineering, 2021, 33(5): 40-49. |
[9] | Jiyuan Li, Mifen Cui, Zhuxiu Zhang, Xian Chen, Qing Liu, Zhaoyang Fei, Jihai Tang, Xu Qiao. Promoting di-isobutene selectivity over ZnO/ZrO2-SO4 in isobutene oligomerization [J]. Chinese Journal of Chemical Engineering, 2021, 38(10): 165-171. |
[10] | Racheal Aigbe, Doga Kavaz. Unravel the potential of zinc oxide nanoparticle-carbonized sawdust matrix for removal of lead (II) ions from aqueous solution [J]. Chinese Journal of Chemical Engineering, 2021, 29(1): 92-102. |
[11] | Saeideh Dermanaki Farahani, Javad Zolgharnein. Multivariate optimization of high removal of lead(II) using an efficient synthesized Ni-based metal-organic framework adsorbent [J]. Chinese Journal of Chemical Engineering, 2021, 29(1): 146-153. |
[12] | Xinyu Wang, Xinghua Qin, Qiongqiong Lu, Mingming Han, Ahmad Omar, Daria Mikhailova. Mixed phase sodium manganese oxide as cathode for enhanced aqueous zinc-ion storage [J]. Chinese Journal of Chemical Engineering, 2020, 28(8): 2214-2220. |
[13] | Ali Asghar Balesini Aghdam, Hossein Yoozbashizadeh, Javad Moghaddam. Simple separation method of Zn(II) and Cd(II) from brine solution of zinc plant residue and synthetic chloride media using solvent extraction [J]. Chinese Journal of Chemical Engineering, 2020, 28(4): 1055-1061. |
[14] | Wei Zhang, Gang Tang, Xiaoqin Xiang, Renyu Wang, Shuangquan Gao, Xinfeng Zhu, Qiting Zuo. A low-cost green approach for synthesis of lead oxide from waste lead ash for use in new lead-acid batteries [J]. Chinese Journal of Chemical Engineering, 2019, 27(7): 1674-1679. |
[15] | Weizao Liu, Li Lü, Yao Lu, Xiaowei Hu, Bin Liang. Removal of chloride from simulated acidic wastewater in the zinc production [J]. Chinese Journal of Chemical Engineering, 2019, 27(5): 1037-1043. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 76
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 176
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||