Chinese Journal of Chemical Engineering ›› 2022, Vol. 43 ›› Issue (3): 124-134.DOI: 10.1016/j.cjche.2022.01.005
Previous Articles Next Articles
Di Gao1, Yibo Zhi1, Liyuan Cao1, Liang Zhao1, Jinsen Gao1, Chunming Xu1, Mingzhi Ma2, Pengfei Hao2
Received:
2021-09-10
Revised:
2021-12-24
Online:
2022-04-28
Published:
2022-03-28
Contact:
Liang Zhao,E-mail:liangzhao@cup.edu.cn
Supported by:
Di Gao1, Yibo Zhi1, Liyuan Cao1, Liang Zhao1, Jinsen Gao1, Chunming Xu1, Mingzhi Ma2, Pengfei Hao2
通讯作者:
Liang Zhao,E-mail:liangzhao@cup.edu.cn
基金资助:
Di Gao, Yibo Zhi, Liyuan Cao, Liang Zhao, Jinsen Gao, Chunming Xu, Mingzhi Ma, Pengfei Hao. Influence of zinc state on the catalyst properties of Zn/HZSM-5 zeolite in 1-hexene aromatization and cyclohexane dehydrogenation[J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 124-134.
Di Gao, Yibo Zhi, Liyuan Cao, Liang Zhao, Jinsen Gao, Chunming Xu, Mingzhi Ma, Pengfei Hao. Influence of zinc state on the catalyst properties of Zn/HZSM-5 zeolite in 1-hexene aromatization and cyclohexane dehydrogenation[J]. 中国化学工程学报, 2022, 43(3): 124-134.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2022.01.005
[1] F. Mohammadparast, R. Halladj, S. Askari, The crystal size effect of nano-sized ZSM-5 in the catalytic performance of petrochemical processes:a review, Chem. Eng. Commun. 202 (4) (2015) 542-556.http://dx.doi.org/10.1080/00986445.2014.952815 [2] S.M. Alipour, Recent advances in naphtha catalytic cracking by nano ZSM-5:a review, Chin. J. Catal. 37 (5) (2016) 671-680.http://dx.doi.org/10.1016/S1872-2067(15)61091-9 [3] M.Y. Gim, C. Song, T.H. Kim, J.H. Song, D.H. Kim, K.Y. Lee, I.K. Song, BTX production by coaromatization of methane and propane over gallium oxide supported on mesoporous HZSM-5, Mol. Catal. 439 (2017) 134-142.http://dx.doi.org/10.1016/j.mcat.2017.07.001 [4] X.W. Xu, E.C. Jiang, Z.Y. Li, Y. Sun, BTX from anisole by hydrodeoxygenation and transalkylation at ambient pressure with zeolite catalysts, Fuel 221 (2018) 440-446.http://dx.doi.org/10.1016/j.fuel.2018.01.033 [5] L. Han, O.Y. Ying, E.H. Xing, Y.B. Luo, Z.J. Da, Enhancing hydrothermal stability of framework Al in ZSM-5:from the view on the transformation between P and Al species by solid-state NMR spectroscopy, Chin. J. Chem. Eng. 28 (12) (2020) 3052-3060.http://dx.doi.org/10.1016/j.cjche.2020.07.039 [6] S.A. Tabak, F.J. Krambeck, W.E. Garwood, Conversion of propylene and butylene over ZSM-5 catalyst, AIChE J. 32 (9) (1986) 1526-1531.https://doi.org/10.1002/aic.690320913 [7] M. Bjørgen, S. Svelle, F. Joensen, J. Nerlov, S. Kolboe, F. Bonino, L. Palumbo, S. Bordiga, U. Olsbye, Conversion of methanol to hydrocarbons over zeolite H-ZSM-5:on the origin of the olefinic species, J. Catal. 249 (2) (2007) 195-207.http://dx.doi.org/10.1016/j.jcat.2007.04.006 [8] U. Olsbye, S. Svelle, M. Bjørgen, P. Beato, T.V.W. Janssens, F. Joensen, S. Bordiga, K.P. Lillerud, Conversion of methanol to hydrocarbons:how zeolite cavity and pore size controls product selectivity, Angew. Chem. Int. Ed. 51 (24) (2012) 5810-5831.https://doi.org/10.1002/anie.201103657 [9] S. Ilias, A. Bhan, Mechanism of the catalytic conversion of methanol to hydrocarbons, ACS Catal. 3 (1) (2013) 18-31.https://doi.org/10.1021/cs3006583 [10] Y.Q. Song, X.X. Zhu, S.J. Xie, Q.X. Wang, L.Y. Xu, The effect of acidity on olefin aromatization over potassium modified ZSM-5 catalysts, Catal. Lett. 97 (1/2) (2004) 31-36.https://doi.org/10.1023/b:catl.0000034281.58853.76 [11] D.B. Lukyanov, N.S. Gnep, M.R. Guisnet, Kinetic modeling of ethene and propene aromatization over HZSM-5 and GaHZSM-5, Ind. Eng. Chem. Res. 33 (2) (1994) 223-234.http://dx.doi.org/10.1021/ie00026a008 [12] Z.N. Lashchinskaya, A.A. Gabrienko, S.S. Arzumanov, A.A. Kolganov, A.V. Toktarev, D. Freude, J. Haase, A.G. Stepanov, Which species, Zn2+ cations or ZnO clusters, are more efficient for olefin aromatization? 13C solid-state NMR investigation of n-but-1-ene transformation on Zn-modified zeolite, ACS Catal. 10 (23) (2020) 14224-14233.https://doi.org/10.1021/acscatal.0c03647 [13] P. He, J.S. Jarvis, S.J. Meng, Q.Y. Li, G.M. Bernard, L.J. Liu, X.H. Mao, Z. Jiang, H.B. Zeng, V.K. Michaelis, H. Song, Co-aromatization of methane with propane over Zn/HZSM-5:the methane reaction pathway and the effect of Zn distribution, Appl. Catal. B Environ. 250 (2019) 99-111.http://dx.doi.org/10.1016/j.apcatb.2019.03.011 [14] M. Raad, A. Astafan, S. Hamieh, J. Toufaily, T. Hamieh, J.D. Comparot, C. Canaff, T.J. Daou, J. Patarin, L. Pinard, Catalytic properties of Ga-containing MFI-type zeolite in cyclohexane dehydrogenation and propane aromatization, J. Catal. 365 (2018) 376-390.http://dx.doi.org/10.1016/j.jcat.2018.06.029 [15] J.H. Gao, K.M. Ji, H. Zhou, J.Y. Xun, Z.H. Liu, K. Zhang, P. Liu, Synthesis and characterization of BZSM-5 and its catalytic performance in the methanol to hydrocarbons reaction, Chin. J. Chem. Eng. 35 (2021) 196-203.http://dx.doi.org/10.1016/j.cjche.2020.09.008 [16] I. Pinilla-Herrero, E. Borfecchia, J. Holzinger, U.V. Mentzel, F. Joensen, K.A. Lomachenko, S. Bordiga, C. Lamberti, G. Berlier, U. Olsbye, S. Svelle, J. Skibsted, P. Beato, High Zn/Al ratios enhance dehydrogenation vs hydrogen transfer reactions of Zn-ZSM-5 catalytic systems in methanol conversion to aromatics, J. Catal. 362 (2018) 146-163.http://dx.doi.org/10.1016/j.jcat.2018.03.032 [17] X.J. Niu, J. Gao, Q. Miao, M. Dong, G.F. Wang, W.B. Fan, Z.F. Qin, J.G. Wang, Influence of preparation method on the performance of Zn-containing HZSM-5 catalysts in methanol-to-aromatics, Microporous Mesoporous Mater. 197 (2014) 252-261.http://dx.doi.org/10.1016/j.micromeso.2014.06.027 [18] S. Triwahyono, A.A. Jalil, R.R. Mukti, M. Musthofa, N.A.M. Razali, M.A.A. Aziz, Hydrogen spillover behavior of Zn/HZSM-5 showing catalytically active protonic acid sites in the isomerization of n-pentane, Appl. Catal. A Gen. 407 (2011) 91-99.http://dx.doi.org/10.1016/j.fuproc.2016.12.006 [19] A.A. Gabrienko, S.S. Arzumanov, A.V. Toktarev, I.G. Danilova, I.P. Prosvirin, V.V. Kriventsov, V.I. Zaikovskii, D. Freude, A.G. Stepanov, Different efficiency of Zn2+ and ZnO species for methane activation on Zn-modified zeolite, ACS Catal. 7 (3) (2017) 1818-1830.https://doi.org/10.1021/acscatal.6b03036 [20] L. Lin, J.X. Liu, X.T. Zhang, J.L. Wang, C.Y. Liu, G. Xiong, H.C. Guo, Effect of zeolitic hydroxyl nests on the acidity and propane aromatization performance of zinc nitrate impregnation-modified HZSM-5 zeolite, Ind. Eng. Chem. Res. 59 (37) (2020) 16146-16160.https://doi.org/10.1021/acs.iecr.0c02596 [21] P.T. Huyen, V.D. Trinh, M.T. Portilla, C. Martínez, Influence of boron promotion on the physico-chemical properties and catalytic behavior of Zn/ZSM-5 in the aromatization of n-hexane, Catal. Today 366 (2021) 97-102.http://dx.doi.org/10.1016/j.cattod.2020.03.030 [22] X.J. Niu, J. Gao, K. Wang, Q. Miao, M. Dong, G.F. Wang, W.B. Fan, Z.F. Qin, J.G. Wang, Influence of crystal size on the catalytic performance of H-ZSM-5 and Zn/H-ZSM-5 in the conversion of methanol to aromatics, Fuel Process. Technol. 157 (2017) 99-107.http://dx.doi.org/10.1016/j.fuproc.2016.12.006 [23] J.A. Biscardi, G.D. Meitzner, E. Iglesia, Structure and density of active Zn species in Zn/H-ZSM5 propane aromatization catalysts, J. Catal. 179 (1) (1998) 192-202.http://dx.doi.org/10.1006/jcat.1998.2177 [24] H. Berndt, G. Lietz, J. Völter, Zinc promoted H-ZSM-5 catalysts for conversion of propane to aromatics II. Nature of the active sites and their activation, Appl. Catal. A Gen. 146 (2) (1996) 365-379.http://dx.doi.org/10.1016/S0926-860X(96)00124-X [25] A.L. Yakovlev, A.A. Shubin, G.M. Zhidomirov, R.A. van Santen, DFT study of oxygen-bridged Zn2+ ion pairs in Zn/ZSM-5 zeolites, Catal. Lett. 70 (2000) 175-181 [26] A. Bonnin, J.D. Comparot, Y. Pouilloux, V. Coupard, D. Uzio, L. Pinard, Mechanisms of aromatization of dilute ethylene on HZSM-5 and on Zn/HZSM-5 catalysts, Appl. Catal. A Gen. 611 (2021) 117974.http://dx.doi.org/10.1016/j.apcata.2020.117974 [27] L. Lin, X.T. Zhang, N. He, J.X. Liu, Q. Xin, H.C. Guo, Operando dual beam FTIR study of hydroxyl groups and Zn species over defective HZSM-5 zeolite supported zinc catalysts, Catalysts 9 (1) (2019) 100.https://doi.org/10.3390/catal9010100 [28] H.Y. Long, F.Y. Jin, G. Xiong, X.S. Wang, Effect of lanthanum and phosphorus on the aromatization activity of Zn/ZSM-5 in FCC gasoline upgrading, Microporous Mesoporous Mater. 198 (2014) 29-34.http://dx.doi.org/10.1016/j.micromeso.2014.07.016 [29] S.S. Arzumanov, A.A. Gabrienko, A.V. Toktarev, Z.N. Lashchinskaya, D. Freude, J. Haase, A.G. Stepanov, Propane transformation on Zn-modified zeolite. effect of the nature of Zn species on alkane aromatization and hydrogenolysis, J. Phys. Chem. C 123 (50) (2019) 30473-30485.https://doi.org/10.1021/acs.jpcc.9b09718 [30] Y.H. Zhang, M.M. Liu, L. Zhao, S.X. Liu, J.S. Gao, C.M. Xu, M.Z. Ma, Q.F. Meng, Modeling, simulation, and optimization for producing ultra-low sulfur and high-octane number gasoline by separation and conversion of fluid catalytic cracking naphtha, Fuel 299 (2021) 120740.http://dx.doi.org/10.1016/j.fuel.2021.120740 [31] T.J. Fu, J. Shao, Z. Li, Catalytic synergy between the low Si/Al ratio Zn/ZSM-5 and high Si/Al ratio HZSM-5 for high-performance methanol conversion to aromatics, Appl. Catal. B Environ. 291 (2021) 120098.http://dx.doi.org/10.1016/j.apcatb.2021.120098 [32] A. Bonnin, Y. Pouilloux, V. Coupard, D. Uzio, L. Pinard, Deactivation mechanism and regeneration study of Zn/HZSM-5 catalyst in ethylene transformation, Appl. Catal. A Gen. 611 (2021) 117976.http://dx.doi.org/10.1016/j.apcata.2020.117976 [33] M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure Appl. Chem. 87 (9-10) (2015) 1051-1069.https://doi.org/10.1515/pac-2014-1117 [34] P. He, A.G. Wang, S.J. Meng, G.M. Bernard, L.J. Liu, V.K. Michaelis, H. Song, Impact of Al sites on the methane co-aromatization with alkanes over Zn/HZSM-5, Catal. Today 323 (2019) 94-104.http://dx.doi.org/10.1016/j.cattod.2018.05.051 [35] T. Pan, Z.J. Wu, K.Y. Zhou, In situ incorporation of Zn into hierarchical ZSM-5 zeolites for olefin hydroisomerization, Ind. Eng. Chem. Res. 59 (27) (2020) 12371-12380.https://doi.org/10.1021/acs.iecr.0c01506 [36] E. Selli, L. Forni, Comparison between the surface acidity of solid catalysts determined by TPD and FTIR analysis of pre-adsorbed pyridine, Microporous Mesoporous Mater. 31 (1-2) (1999) 129-140.http://dx.doi.org/10.1016/S1387-1811(99)00063-3 [37] C.A. Emeis, Determination of integrated molar extinction coefficients for infrared absorption bands of pyridine adsorbed on solid acid catalysts, J. Catal. 141 (2) (1993) 347-354.http://dx.doi.org/10.1006/jcat.1993.1145 [38] X.F. Su, K. Zhang, Y. Snatenkova, Z. Matieva, X.F. Bai, N. Kolesnichenko, W. Wu, High-efficiency nano[Zn, Al]ZSM-5 bifunctional catalysts for dimethyl ether conversion to isoparaffin-rich gasoline, Fuel Process. Technol. 198 (2020) 106242.http://dx.doi.org/10.1016/j.fuproc.2019.106242 [39] X.F. Su, G.L. Wang, X.F. Bai, W. Wu, L.F. Xiao, Y.J. Fang, J.W. Zhang, Synthesis of nanosized HZSM-5 zeolites isomorphously substituted by gallium and their catalytic performance in the aromatization, Chem. Eng. J. 293 (2016) 365-375.http://dx.doi.org/10.1016/j.cej.2016.02.088 [40] M.D. Xin, E.H. Xing, X.Z. Gao, Y.R. Wang, Y. Ouyang, G.T. Xu, Y.B. Luo, X.T. Shu, Ga substitution during modification of ZSM-5 and its influences on catalytic aromatization performance, Ind. Eng. Chem. Res. 58 (17) (2019) 6970-6981.https://doi.org/10.1021/acs.iecr.9b00295 [41] N. Amin, D.D. Anggoro, Characterization and Activity of Cr, Cu and Ga Modified ZSM-5 for Direct Conversion of Methane to Liquid Hydrocarbons, J. Nat. Gas Chem. 12 (2003) 123-119 [42] J.H. Gao, L.D. Zhang, J.X. Hu, W.H. Li, J.G. Wang, Effect of zinc salt on the synthesis of ZSM-5 for alkylation of benzene with ethanol, Catal. Commun. 10 (12) (2009) 1615-1619.http://dx.doi.org/10.1016/j.catcom.2009.04.029 [43] Y.W. Zhang, Y.M. Zhou, L. Huang, S.J. Zhou, X.L. Sheng, Q.L. Wang, C. Zhang, Structure and catalytic properties of the Zn-modified ZSM-5 supported platinum catalyst for propane dehydrogenation, Chem. Eng. J. 270 (2015) 352-361.http://dx.doi.org/10.1016/j.cej.2015.01.008 [44] L.Q. Meng, X.C. Zhu, W. Wannapakdee, R. Pestman, M.G. Goesten, L. Gao, A.J.F. van Hoof, E.J.M. Hensen, A dual-templating synthesis strategy to hierarchical ZSM-5 zeolites as efficient catalysts for the methanol-to-hydrocarbons reaction, J. Catal. 361 (2018) 135-142.http://dx.doi.org/10.1016/j.jcat.2018.02.032 [45] K.S.W. Sing, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984), Pure Appl. Chem. 57 (1985) 603-619 [46] Y.M. Ni, A.M. Sun, X.L. Wu, G.L. Hai, J.L. Hu, T. Li, G.X. Li, The preparation of nano-sized H[Zn, Al]ZSM-5 zeolite and its application in the aromatization of methanol, Microporous Mesoporous Mater. 143 (2-3) (2011) 435-442.http://dx.doi.org/10.1016/j.micromeso.2011.03.029 [47] X.L. Zhu, J.Y. Zhang, M. Cheng, G.W. Wang, M.X. Yu, C.Y. Li, Methanol aromatization over Mg-P-modified[Zn, Al]ZSM-5 zeolites for efficient coproduction of Para-xylene and light olefins, Ind. Eng. Chem. Res. 58 (42) (2019) 19446-19455.https://doi.org/10.1021/acs.iecr.9b03743 [48] J.G. Zhang, W.Z. Qian, C.Y. Kong, F. Wei, Increasing Para-xylene selectivity in making aromatics from methanol with a surface-modified Zn/P/ZSM-5 catalyst, ACS Catal. 5 (5) (2015) 2982-2988.http://dx.doi.org/10.1021/acscatal.5b00192 [49] F. Lónyi, J. Valyon, On the interpretation of the NH3-TPD patterns of H-ZSM-5 and H-mordenite, Microporous Mesoporous Mater. 47 (2-3) (2001) 293-301.http://dx.doi.org/10.1016/S1387-1811(01)00389-4 [50] D.H. Pan, X.H. Song, X.H. Yang, L.J. Gao, R.P. Wei, J. Zhang, G.M. Xiao, Efficient and selective conversion of methanol to Para-xylene over stable H[Zn, Al]ZSM-5/SiO2 composite catalyst, Appl. Catal. A Gen. 557 (2018) 15-24.http://dx.doi.org/10.1016/j.apcata.2018.03.006 [51] B. Xu, M.H. Tan, X.M. Wu, H.L. Geng, F.E. Song, Q.X. Ma, C.H. Luan, G.H. Yang, Y.S. Tan, Effects of silylation on Ga/HZSM-5 for improved propane dehydroaromatization, Fuel 283 (2021) 118889.http://dx.doi.org/10.1016/j.fuel.2020.118889 [52] L.G. Wang, S.Y. Sang, S.H. Meng, Y. Zhang, Y. Qi, Z.M. Liu, Direct synthesis of Zn-ZSM-5 with novel morphology, Mater. Lett. 61 (8-9) (2007) 1675-1678.http://dx.doi.org/10.1016/j.matlet.2006.07.097 [53] J. Chen, Z.C. Feng, P.L. Ying, C. Li, ZnO clusters encapsulated inside micropores of zeolites studied by UV Raman and laser-induced luminescence spectroscopies, J. Phys. Chem. B 108 (34) (2004) 12669-12676.http://dx.doi.org/10.1021/jp048746x [54] C. Song, X.J. Li, X.X. Zhu, S.L. Liu, F.C. Chen, F. Liu, L.Y. Xu, Influence of the state of Zn species over Zn-ZSM-5/ZSM-11 on the coupling effects of cofeeding n-butane with methanol, Appl. Catal. A Gen. 519 (2016) 48-55.http://dx.doi.org/10.1016/j.apcata.2016.03.023 [55] V.T.T. Ha, A. Sarıoğlan, A. Erdem-Şenatalar, Y.B. Taârit, An EPR and NMR study on Mo/HZSM-5 catalysts for the aromatization of methane:investigation of the location of the pentavalent molybdenum, J. Mol. Catal. A Chem. 378 (2013) 279-284.http://dx.doi.org/10.1016/j.molcata.2013.06.020 [56] F. Mudu, U. Olsbye, B. Arstad, S. Diplas, Y.J. Li, H. Fjellvåg, Aluminium substituted lanthanum based perovskite type oxides, non-stoichiometry and performance in methane partial oxidation by framework oxygen, Appl. Catal. A Gen. 523 (2016) 171-181.http://dx.doi.org/10.1016/j.apcata.2016.05.013 [57] Y.M. Jia, J.W. Wang, K. Zhang, S.B. Liu, G.L. Chen, Y.F. Yang, C.M. Ding, P. Liu, Catalytic conversion of methanol to aromatics over nano-sized HZSM-5 zeolite modified by ZnSiF6·6H2O, Catal. Sci. Technol. 7 (8) (2017) 1776-1791.https://doi.org/10.1039/c7cy00143f [58] J. Chen, L. Chang, H.M. Kang, F.X. Ding, Characterization of Zn promoter in ZnO/HZSM-5 catalyst for propane aromatization, Chin. J. Chem. 22 (2001) 229-232 [59] L.W. Zhang, H.K. Zhang, Z.Q. Chen, Q. Ning, S.Y. Liu, J. Ren, X.D. Wen, Y.W. Li, Insight into the impact of Al distribution on the catalytic performance of 1-octene aromatization over ZSM-5 zeolite, Catal. Sci. Technol. 9 (24) (2019) 7034-7044.https://doi.org/10.1039/c9cy01672d [60] Y.N. Li, S.L. Liu, Z.K. Zhang, S.J. Xie, X.X. Zhu, L.Y. Xu, Aromatization and isomerization of 1-hexene over alkali-treated HZSM-5 zeolites:improved reaction stability, Appl. Catal. A Gen. 338 (1-2) (2008) 100-113.http://dx.doi.org/10.1016/j.apcata.2007.12.026 [61] Y. Fan, J.Z. Yin, G. Shi, H.Y. Liu, X.J. Bao, Mechanistic pathways for olefin hydroisomerization and aromatization in fluid catalytic cracking gasoline hydro-upgrading, Energy Fuels 23 (6) (2009) 3016-3023.http://dx.doi.org/10.1021/ef900030h [62] Y.N. Li, S.L. Liu, S.J. Xie, L.Y. Xu, Promoted metal utilization capacity of alkali-treated zeolite:preparation of Zn/ZSM-5 and its application in 1-hexene aromatization, Appl. Catal. A Gen. 360 (1) (2009) 8-16.http://dx.doi.org/10.1016/j.apcata.2009.02.039 [63] H. Kitagawa, Y. Sendoda, Y. Ono, Transformation of propane into aromatic hydrocarbons over ZSM-5 zeolites, J. Catal. 101 (1) (1986) 12-18.http://dx.doi.org/10.1016/0021-9517(86)90223-X [64] M. Guisnet, N.S. Gnep, F. Alario, Aromatization of short chain alkanes on zeolite catalysts, Appl. Catal. A Gen. 89 (1) (1992) 1-30 |
[1] | Junru Liu, Rui Hu, Xinlei Liu, Qunfeng Zhang, Guanghua Ye, Zhijun Sui, Xinggui Zhou. Modeling of propane dehydrogenation combined with chemical looping combustion of hydrogen in a fixed bed reactor [J]. Chinese Journal of Chemical Engineering, 2022, 47(7): 165-173. |
[2] | Shuo Li, Jianlin Cao, Xiang Feng, Yupeng Du, De Chen, Chaohe Yang, Wenhua Wang, Wanzhong Ren. Insights into the confinement effect on isobutane alkylation with C4 olefin catalyzed by zeolite catalyst: A combined theoretical and experimental study [J]. Chinese Journal of Chemical Engineering, 2022, 47(7): 174-184. |
[3] | Zhouxin Chang, Feng Yu, Zhisong Liu, Zijun Wang, Jiangbing Li, Bin Dai, Jinli Zhang. Ni-Al mixed metal oxide with rich oxygen vacancies: CO methanation performance and density functional theory study [J]. Chinese Journal of Chemical Engineering, 2022, 46(6): 73-83. |
[4] | Xing Zhang, Jingfeng Wu, Junhao Chen, Liang Lu, Lingjun Zhu, Shurong Wang. Production of aromatic hydrocarbons by co-cracking of bio-oil and ethanol over Ga2O3/HZSM-5 catalysts [J]. Chinese Journal of Chemical Engineering, 2022, 46(6): 126-133. |
[5] | Qunhong Liu, Jiangtao Yang, Hongwei Zhang, Hongming Sun, Shuzheng Wu, Bingqing Ge, Rong Wang, Pei Yuan. Tuning the properties of Ni-based catalyst via La incorporation for efficient hydrogenation of petroleum resin [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 41-50. |
[6] | Lijuan He, Cuimei Zhi, Lixia Ling, Riguang Zhang, Baojun Wang. Syngas to ethanol on MoCu(2 1 1) surface: Effect of promoter Mo on C—O bond breaking and C—C bond formation [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 78-89. |
[7] | Weizhou Jiao, Xingyue Wei, Shengjuan Shao, Youzhi Liu. Catalytic decomposition and mass transfer of aqueous ozone promoted by Fe-Mn-Cu/γ-Al2O3 in a rotating packed bed [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 133-142. |
[8] | Zheng Wang, Sijia Li, Shengping Wang, Jiaxu Liu, Yujun Zhao, Xinbin Ma. Coupling effect of bifunctional ZnCe@SBA-15 catalyst in 1,3-butadiene production from bioethanol [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 162-170. |
[9] | Xin Ren, Li Leng, Yueqiang Cao, Jing Zhang, Xuezhi Duan, Xueqing Gong, Jinghong Zhou, Xinggui Zhou. Enhanced recycling performance of bimetallic Ir-Re/SiO2 catalyst by amberlyst-15 for glycerol hydrogenolysis [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 171-181. |
[10] | Fu Yang, Ruyi Wang, Shijian Zhou, Xuyu Wang, Yan Kong, Shuying Gao. Mesopore-encaged V-Mn oxides: Progressive insertion approach triggering reconstructed active sites to enhance catalytic oxidative desulfuration [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 182-193. |
[11] | Xiao Zhao, Xuan Shi, Zhongshun Chen, Long Xu, Chengyi Dai, Yazhou Zhang, Xinwen Guo, Dongyuan Yang, Xiaoxun Ma. Efficient conversion of benzene and syngas to toluene and xylene over ZnO-ZrO2&H-ZSM-5 bifunctional catalysts [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 203-210. |
[12] | Peiwei Han, Chunhua Xu, Yamin Wang, Chenglin Sun, Huangzhao Wei, Haibo Jin, Ying Zhao, Lei Ma. The high catalytic activity and strong stability of 3%Fe/AC catalysts for catalytic wet peroxide oxidation of m-cresol: The role of surface functional groups and FeOx particles [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 105-114. |
[13] | Feng Guo, Zhihao Chen, Xiliu Huang, Longwen Cao, Xiaofang Cheng, Weilong Shi, Lizhuang Chen. Ternary Ni2P/Bi2MoO6/g-C3N4 composite with Z-scheme electron transfer path for enhanced removal broad-spectrum antibiotics by the synergistic effect of adsorption and photocatalysis [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 157-168. |
[14] | Yanan Wei, Yunlei Zhang, Bing Li, Wen Guan, Changhao Yan, Xin Li, Yongsheng Yan. Facile synthesis of metal-organic frameworks embedded in interconnected macroporous polymer as a dual acid-base bifunctional catalyst for efficient conversion of cellulose to 5-hydroxymethylfurfural [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 169-181. |
[15] | Yingjie Zhou, Wenhui Zhang, Shengwei Yu, Haibo Jiang, Chunzhong Li. Patterned catalyst layer boosts the performance of proton exchange membrane fuel cells by optimizing water management [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 246-252. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||