Chinese Journal of Chemical Engineering ›› 2021, Vol. 39 ›› Issue (11): 1-15.DOI: 10.1016/j.cjche.2021.03.007
• Reviews • Next Articles
Shuaifeng Zhang1,2, Qinghua Zhang1,2, Jianzhuang Shang3, Zaisha Mao1, Chao Yang1,2
Received:
2020-12-20
Revised:
2021-03-02
Online:
2021-12-27
Published:
2021-11-28
Contact:
Qinghua Zhang, Chao Yang
Supported by:
Shuaifeng Zhang1,2, Qinghua Zhang1,2, Jianzhuang Shang3, Zaisha Mao1, Chao Yang1,2
通讯作者:
Qinghua Zhang, Chao Yang
基金资助:
Shuaifeng Zhang, Qinghua Zhang, Jianzhuang Shang, Zaisha Mao, Chao Yang. Measurement methods of particle size distribution in emulsion polymerization[J]. Chinese Journal of Chemical Engineering, 2021, 39(11): 1-15.
Shuaifeng Zhang, Qinghua Zhang, Jianzhuang Shang, Zaisha Mao, Chao Yang. Measurement methods of particle size distribution in emulsion polymerization[J]. 中国化学工程学报, 2021, 39(11): 1-15.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2021.03.007
[1] A. Bellamine, E. Degrandi, M. Gerst, R. Stark, C. Beyers, C. Creton, Design of nanostructured waterborne adhesives with improved shear resistance, Macromol. Mater. Eng. 296(1) (2011) 31-41. [2] R. Jovanović, M.A. Dubé, Emulsion-based pressure-sensitive adhesives:A review, J. Macromol. Sci., Part C Polym. Rev. 44(1) (2004) 1-51. [3] L.N. Butler, C.M. Fellows, R.G. Gilbert, Effect of surfactants used for binder synthesis on the properties of latex paints, Prog. Org. Coat. 53(2) (2005) 112- 118. [4] Z.S. Lin, J.M. Goddard, Photocurable coatings prepared by emulsion polymerization present chelating properties, Colloids Surf. B 172(2018) 143-151. [5] D. England, N. Tambe, J. Texter, Stimuli-responsive nanolatexes:Porating films, ACS Macro. Lett. 1(2) (2012) 310-314. [6] J.M. Asua, Polymeric Dispersions:Principles and Applications, Springer, Netherlands, Berlin, 1997. [7] K. Surmacz, P. Chmielarz, Low ppm atom transfer radical polymerization in (mini)emulsion systems, Materials 13(7) (2020) 1717. [8] A. Sood, Particle size distribution control in emulsion polymerization, J. Appl. Polym. Sci. 92(5) (2004) 2884-2902. [9] D. Edouard, N. Sheibat-Othman, H. Hammouri, Observer design for particle size distribution in emulsion polymerization, AIChE J. 51(12) (2005) 3167- 3185. [10] L.I. Jacob, W. Pauer, In-line monitoring of latex-particle size during emulsion polymerizations with a high polymer content of more than 60%, RSC Adv. 10(44) (2020) 26528-26534. [11] J.M. Geurts, M. Lammers, A.L. German, The effect of bimodality of the particle size distribution on film formation of latices, Colloids Surf. A 108(2-3) (1996) 295-303. [12] A. Guyot, F. Chu, M. Schneider, C. Graillat, T.F. McKenna, High solid content latexes, Prog. Polym. Sci. 27(8) (2002) 1573-1615. [13] D.L. Chicoma, C. Sayer, R. Giudici, In-line monitoring of particle size during emulsion polymerization under different operational conditions using NIR spectroscopy, Macromol. React. Eng. 5(3-4) (2011) 150-162. [14] J. Herrera-Ordonez, Simplified calculation of the average number of radicals per particle in emulsion polymerization:Effect of particle nucleation and coagulation rates, Macromol. React. Eng. 13(6) (2019) 1900025. [15] N. Sheibat-Othman, H.M. Vale, J.M. Pohn, T.F.L. McKenna, Is modeling the PSD in emulsion polymerization a finished problem? An overview, Macromol. React. Eng. 11(5) (2017) 1600059. [16] R.W. Tess, G.W. Poehlein, Applied Polymer Science:Emulsion Polymerization, American Chemical Society, Washington, 1985. [17] W.D. Harkins, A general theory of the reaction loci in emulsion polymerization, J. Chem. Phys. 13(9) (1945) 381-382. [18] W.V. Smith, R.H. Ewart, Kinetics of emulsion polymerization, J. Chem. Phys. 16(6) (1948) 592-599. [19] P.A. Lovell, F.J. Schork, Fundamentals of emulsion polymerization, Biomacromolecules 21(11) (2020) 4396-4441. [20] C.S. Chern, Emulsion polymerization mechanisms and kinetics, Prog. Polym. Sci. 31(5) (2006) 443-486. [21] B.R. Jennings, K. Parslow, Particle size measurement:The equivalent spherical diameter, Proc. R. Soc. London, Ser. A 419(1988) 137-149. [22] H.G. Merkus, Particle Size Measurements, Fundamental, Practice, Quality, Springer, Netherlands, Berlin, 2009. [23] A. Jillavenkatesa, S.J. Dapkunas, L.H. Lum, Particle Size Characterization, NIST Recommended Practice Guide, Special Publication 960-1, Washington, 2001. [24] Z.H.Wang,H.Sun,EmulsionPolymerization,BeijingYanshanPress,Beijing,2015. [25] J. Emmerich, Q. Tang, Y.D. Wang, P. Neubauer, S. Junne, S. Maaß, Optical inline analysis and monitoring of particle size and shape distributions for multiple applications:Scientific and industrial relevance, Chin. J. Chem. Eng. 27(2) (2019) 257-277. [26] K. Landfester, S. Spiegel, R. Born, H.W. Spiess, On-line detection of emulsion polymerization by solid-state NMR spectroscopy, Colloid Polym. Sci. 276(4) (1998) 356-361. [27] M.M.E. Colmán, P.M.N. Ambrogi, C.S.R. Serra, P.H.H. Araujo, C. Sayer, R. Giudici, At-line monitoring of conversion in the inverse miniemulsion polymerization of acrylamide by Raman spectroscopy, Ind. Eng. Chem. Res. 55(22) (2016) 6317-6324. [28] E.S. Daniels, E.D. Sudol, M.E. El-Aasser, Polymer Colloids:Science and Technology of Lates systems, American Chemical Society, Washington, 2001. [29] M. Schneider, T.F. McKenna, Comparative study of methods for the measurement of particle size and size distribution of polymeric emulsions, Part. Part. Syst. Char. 19(1) (2002) 28-37. [30] H. Schuch, J. Klingler, P. Rossmanith, T. Frechen, M. Gerst, J. Feldthusen, A.H.E. Müller, Characterization of micelles of polyisobutylene-block-poly (methacrylic acid) in aqueous medium, Macromolecules 33(5) (2000) 1734- 1740. [31] W. Burchard, M. Schmidt, W.H. Stockmayer, Information on polydispersity and branching from combined quasi-elastic and integrated scattering, Macromolecules 13(5) (1980) 1265-1272. [32] L.J. Fetters, N.P. Balsara, J.S. Huang, H.S. Jeon, K. Almdal, M.Y. Lin, Aggregation in living polymer solutions by light and neutron scattering:A study of model ionomers, Macromolecules 28(14) (1995) 4996-5005. [33] J.Q. Zhao, E.M. Pearce, T.K. Kwei, H.S. Jeon, P.K. Kesani, N.P. Balsara, Micelles formed by a model hydrogen-bonding block copolymer, Macromolecules 28(6) (1995) 1972-1978. [34] J.M.F. Nogueira, M.A.R.B. Castanho, Crude tall-oil sodium salts micellization in aqueous solutions studied by static and dynamic light scattering, Colloids Surf. A 191(3) (2001) 263-268. [35] Y.H. Xu, Particle size analyses of porous silica and hybrid silica chromatographic support particles:Comparison of flow/hyperlayer fieldflow fractionation with scanning electron microscopy, electrical sensing zone, and static light scattering, J. Chromatogr. A 1191(1-2) (2008) 40-56. [36] J. Coe, C. Kupitz, S. Basu, C.E. Conrad, S. Roy-Chowdhury, R. Fromme, P. Fromme, Crystallization of photosystem II for time-resolved structural studies using an X-ray free electron laser, Methods Enzymol. 557(2015) 459-482. [37] A.R. Roig, J.L. Alessandrini, Particle size distributions from static light scattering with regularized non-negative least squares constraints, Part. Part. Syst. Char. 23(6) (2007) 431-437. [38] R.J.W. Hodgson, Genetic algorithm approach to the determination of particle size distributions from static light-scattering data, J. Colloid Interface Sci. 240(2) (2001) 412-418. [39] R.K. Tekade, Basic Fundamentals of Drug Delivery, Elsevier, Amsterdam, 2019. [40] O. Elizalde, G.P. Leal, J.R. Leiza, Particle size distribution measurements of polymeric dispersions:A comparative study, Part. Part. Syst. Char. 17(5-6) (2000) 236-243. [41] I. Hasanzadeh, M. Barikani, A.R. Mahdavian, Ultrasound-assisted emulsion polymerization of poly(methyl methacrylate-co-butyl acrylate):Effect of initiator content and temperature, Polym. Eng. Sci. 56(2) (2016) 214-221. [42] J. Keyvan Rad, A.R. Mahdavian, Photoswitchable dual-color fluorescent particles from seeded emulsion polymerization and role of some affecting parameters on FRET process, Eur. Polym. J. 88(2017) 56-66. [43] M. Abdollahi, M.R. Yousefi, M. Ghahramani, H. Ranjbar, F.S. Najafi, Synthesis of polybutadiene nanoparticles by emulsion polymerization:The effect of electrolyte and initiator type on particle size and reaction kinetics, Iran. Polym. J. 26(1) (2017) 1-10. [44] H. Harmain, C.H. Chan, Batch-to-batch reproducibility studies of pilot-scale emulsion polymerization of poly(styrene-co -butyl acrylate), Macromol. Symp. 382(1) (2018) 1800159. [45] W.H. Lee, J.R. Booth, S.A.F. Bon, On particle size distributions in catalytic chain transfer emulsion polymerization:Chain-extension and the use of derived macromonomers as reactive surfactants in emulsion polymerization, Biomacromolecules 21(11) (2020) 4599-4614. [46] J.M. Stubbs, D.C. Sundberg, A round robin study for the characterization of latex particle morphology-multiple analytical techniques to probe specific structural features, Polymer 46(4) (2005) 1125-1138. [47] L. Griveau, J. Delorme, J. Engstrom, P.Y. Dugas, A. Carlmark, E. Malmström, F. D'Agosto, M. Lansalot, Synergetic effect of water-soluble PEG-based macromonomers and cellulose nanocrystals for the stabilization of PMMA latexes by surfactant-free emulsion polymerization, Biomacromolecules 21(11) (2020) 4479-4491. [48] S. Bretler, U. Bretler, S. Margel, Engineering of new spiropyran photochromic fluorescent polymeric nanoparticles of narrow size distribution by emulsion polymerization process, Eur. Polym. J. 89(2017) 13-22. [49] J.H. Zhou, L. Wang, X.H. Zha, H.L. Wang, Synthesis of pH-responsive block copolymer micelles via RAFT polymerization induced self-assembly and its application in emulsifier-free emulsion polymerization, Phosphorus Sulfur 195(2) (2020) 131-141. [50] J. Maiti, A.A. Basfar, Encapsulation of carbon black by surfactant free emulsion polymerization process, Macromol. Res. 25(2) (2017) 120-127. [51] W.X. Huang, Z.P. Mao, Z.R. Xu, B. Xiang, J. Zhang, Synthesis and characterization of size-tunable core-shell structural polyacrylate-graft-poly (acrylonitrile-ran-styrene) (ASA) by pre-emulsion semi-continuous polymerization, Eur. Polym. J. 120(2019) 109247. [52] T. Kim, J.H. Song, J.H. Back, B. Seo, C.S. Lim, H.J. Paik, W. Lee, Flame retardant submicron particles via surfactant-free RAFT emulsion polymerization of styrene derivatives containing phosphorous, Polymers-Basel 12(6) (2020) 1244. [53] K.R. Li, L.F. Xie, B. Wang, J.H. Yan, H.R. Tang, D.H. Zhou, Mechanistic investigation of surfactant-free emulsion polymerization using magnetite nanoparticles modified by citric acid as stabilizers, Langmuir 36(28) (2020) 8290-8300. [54] S. Borphukan, M. Saikia, U. Baruah, A. Gautam, S.D. Baruah, P.J. Saikia, Synthesis of ethylene and butyl methacrylate-based copolymer by emulsion polymerization, J. Appl. Polym. Sci. 136(39) (2019) 47994. [55] L. Farias-Cepeda, J. Herrera-Ordonez, M. Estevez, G. Luna-Barcenas, L. RosalesMarines, New insights on surfactant-free styrene emulsion polymerization in the presence of sodium styrene sulfonate, Colloid Polym. Sci. 294(10) (2016) 1571-1576. [56] B.J. Liu, Y. Bai, C.F. Sun, M. Chen, Z.C. Cao, S. Du, L. Xu, M.Y. Zhang, Synthesis of monodisperse, re-dispersable polymer particles by one-step high solid emulsion polymerization in the presence of reactive surfactant, J. Disper. Sci. Technol. 40(9) (2019) 1256-1263. [57] L. Baissac, C.C. Buron, L. Hallez, P. Berçot, J.Y. Hihn, L. Chantegrel, G. Gosse, Synthesis of sub-micronic and nanometric PMMA particles via emulsion polymerization assisted by ultrasound:Process flow sheet and characterization, Ultrason. Sonochem. 40(B) (2018) 183-192. [58] R.M. Drake, J.E. Gordon, Mie scattering, Am. J. Phys. 53(10) (1985) 955- 962. [59] H. Du, Mie-scattering calculation, Appl. Opt. 43(9) (2004) 1951-1956. [60] Y.F. Yang, H. Yang, G. Zheng, K. Lan, Progress of particle size measurement by laser diffraction and scattering, Guangxue Jishu/Opt. Tech. 37(1) (2011) 19-24(in Chinese). [61] D.W. Cooper, Particulate contamination and microelectronics manufacturing:An introduction, Aerosol Sci. Tech. 5(3) (1986) 287-299. [62] L.A. Clementi, J.R. Vega, L.M. Gugliotta, A. Quirantes, Characterization of spherical core-shell particles by static light scattering. Estimation of the coreand particle-size distributions, J. Quant. Spectrosc. Radiat. Transf. 113(17) (2012) 2255-2264. [63] J. Weese, A reliable and fast method for the solution of Fredholm integralequations of the 1st kind based on Tikhonov regularization, Comput. Phys. Commun. 69(1) (1992) 99-111. [64] S.W. Provencher, A constrained regularization method for inverting data represented by linear algebraic or integral equations, Comput. Phys. Commun. 27(3) (1982) 213-227. [65] A.K. Livesey, P. Licinio, M. Delaye, Maximum entropy analysis of quasielastic light scattering from colloidal dispersions, J. Chem. Phys. 84(9) (1986) 5102- 5107. [66] S.L. Nyeo, B. Chu, Maximum-entropy analysis of photon correlation spectroscopy data, Macromolecules 22(10) (1989) 3998-4009. [67] A. Bjork, C.L. Lawson, R.J. Hanson, Solving least squares problems, Math. Comput. 30(135) (1976) 665. [68] R. Finsy, L. Deriemaeker, E. Geladé, J. Joosten, Inversion of static lightscattering measurements for particle-size distributions, J. Colloid Interface Sci. 153(2) (1992) 337-354. [69] A.M. Alb, W.F. Reed, Fundamental measurements in online polymerization reaction monitoring and control with a focus on ACOMP, Macromol. React. Eng. 4(8) (2010) 470-485. [70] W.-D. Hergeth, W. Lebek, E. Stettin, K. Witkowski, K. Schmutzler, Particle formation in emulsion polymerization II:Aggregation of primary particles, Macromol. Chem. Phys. 193(7) (1992) 1607-1621. [71] J. Stejskal, P. Kratochvíl, J. Urban, G.S. Kapur, Y. Lakshminarayana, Poly (methyl methacrylate) and polyacrylonitrile dispersions stabilized by gelatin, Polym. Int. 30(1) (1993) 81-87. [72] F. Schleife, D. Klank, C. Oetzel, Exact particle size and shape analysis in one instrument:combination of static light scattering and dynamic image analysis, Chem. Ing. Tech. 90(4) (2018) 419-426. [73] T. Oikawa, Electron microscope, Zairyo-to-Kankyo 41(10) (1992) 690- 697. [74] A. Mahdavi Akerdi, M. Nekoomanesh Haghighi, Binary mixtures of anionic double-chain sulfonate emulsifiers in VCM emulsion polymerization with high solid content:Effect of emulsifier's combination ratio and concentration, Polym. Bull. 77(5) (2020) 2697-2718. [75] B.J. Liu, Y.J. Deng, S.L. Sun, M.Y. Zhang, R.Q. Lin, H.X. Zhang, A novel approach to prepare large-scale and narrow-dispersed latex particles by emulsion polymerization based on particle coagulation mechanism, Des. Monomers Polym. 19(2) (2016) 119-127. [76] B.J. Liu, Z.Y. Fu, M.Y. Zhang, H.X. Zhang, Preparation of monodisperse, submicrometer polymer particles by one-step emulsion polymerization under particle coagulation, Colloid Polym. Sci. 294(4) (2016) 787-793. [77] M. Momota, H. Miike, H. Hashimoto, Measuring particle size distribution by digital image processing with inverse Fourier-Bessel transformation, Jpn. J. Appl. Phys. 33(Part 1, No. 2) (1994) 1189-1194. [78] C. Igathinathane, L.O. Pordesimo, E.P. Columbus, W.D. Batchelor, S.R. Methuku, Shape identification and particles size distribution from basic shape parameters using ImageJ, Comput. Electron. Agr. 63(2) (2008) 168-182. [79] M.A. Llosent, L.M. Gugliotta, G.R. Meira, Particle size distribution of SBR and NBR latexes by UV-VIS turbidimetry near the Rayleigh region, Rubber Chem. Technol. 69(4) (1996) 696-712. [80] O.Z. Durham, D.V. Chapman, S. Krishnan, D.A. Shipp, Radical mediated ThiolEne emulsion polymerizations, Macromolecules 50(3) (2017) 775-783. [81] C.A. Silebi, J.G. Dosramos, Separation of submicrometer particles by capillary hydrodynamic fractionation (CHDF), J. Colloid Interface Sci. 130(1) (1989) 14- 24. [82] J.G. DosRamos, C.A. Silebi, The determination of particle size distribution of submicrometer particles by capillary hydrodynamic fractionation (CHDF), J. Colloid Interface Sci. 135(1) (1990) 165-177. [83] J.G. Dosramos, C.A. Silebi, An analysis of the separation of submicron particles by capillary hydrodynamic fractionation (CHDF), J. Colloid Interface Sci. 133(2) (1989) 302-320. [84] L.A. Clementi, Z. Artetxe, Z. Aguirreurreta, A. Agirre, J.R. Leiza, L.M. Gugliotta, J. R. Vega, Capillary hydrodynamic fractionation of hydrophobic colloids:Errors in the estimated particle size distribution, Particuology 17(2014) 97-105. [85] T. Provder, J. Texter, Particle Sizing and Characterization, American Chemical Society, Washington, 2004. [86] S.H. Lee, S. Lee, H.W. Ryu, H. Park, Y.S. Kim, J.H. Kim, Synthesis and in situ doping of highly conductive polypyrrole nanocomplexes with binary acids, J. Polym. Sci. Pol. Chem. 52(16) (2014) 2329-2336. [87] Y.H. Choi, W.K. Lee, Effects of agitation in emulsion polymerization of vinyl acetate, ethylene, and N-methylol acrylamide, J. Ind. Eng. Chem. 16(3) (2010) 431-436. [88] J. Zeaiter, J.A. Romagnoli, G.W. Barton, V.G. Gomes, On-line optimal control of particle size distribution in emulsion polymerisation, Comput. Aided. Chem. Eng. 10(2002) 607-612. [89] C.M. Miller, E.D. Sudol, C.A. Silebi, M.S. El-Aasser, Capillary hydrodynamic fractionation (CHDF) as a tool for monitoring the evolution of the particle size distribution during miniemulsion polymerization, J. Colloid Interface Sci. 172(1) (1995) 249-256. [90] K. Tauer, Block copolymers prepared by emulsion polymerization with poly (ethylene oxide)-azo-initiators, Polym. Adv. Technol. 6(7) (1995) 435-440. [91] R. Hu, V.L. Dimonie, M.S. Elaasser, R.A. Pearson, L.H. Sperling, A. Hiltner, S.G. Mylonakis, Interfacial aspects of latex ipns for toughening polycarbonate. 1. Synthesis and characterization, J. Appl. Polym. Sci. 58(2) (1995) 375-384. [92] A.C. Makan, M.J. Spallek, M. du Toit, T. Klein, H. Pasch, Advanced analysis of polymer emulsions:Particle size and particle size distribution by field-flow fractionation and dynamic light scattering, J. Chromatogr. A 1442(2016) 94- 106. [93] S. Podzimek, Light Scattering, Size Exclusion Chromatography and Asymmetric Flow Field Flow Fractionation:Powerful Tools for the Characterization of Polymers, Proteins and Nanoparticles, John Wiley & Sons Inc, New Jersey, 2011. [94] P. Reschiglian, A. Zattoni, B. Roda, L. Cinque, D. Parisi, A. Roda, F. Dal Piaz, M.H. Moon, B.R. Min, On-line hollow-fiber flow field-flow fractionationelectrospray ionization/time-of-flight mass spectrometry of intact proteins, Anal. Chem. 77(1) (2005) 47-56. [95] M.R. Park, Y.S. Chum, D.Y. Kang, S.K. Yu, S.H. Choi, K.H. Lee, S. Lee, Effect of reaction parameters on size distribution of emulsion-polymerized polystyrene latex beads studied by gravitational flow-flow fractionation (GrFFF), J. Liq. Chromatogr. R. T. 32(7) (2009) 909-922. [96] J. Liu, J.D. Andya, S.J. Shire, A critical review of analytical ultracentrifugation and field flow fractionation methods for measuring protein aggregation, AAPS J. 8(3) (2006) 580-589. [97] P. Ducheyne, K.E. Healy, D.W. Grainger, D.W. Hutmacher, C.J. Kirkpatrick, Comprehensive Biomaterials, Elsevier, Oxford, 2011. [98] S. Han, J. Choi, Y. Yoo, E.C. Jung, S. Lee, Size monitoring in the synthesis of silica nanoparticles using asymmetrical flow field-flow fractionation (AF4), Bull. Korean Chem. Soc. 37(3) (2016) 335-343. [99] G.E.N. Pound-Lana, G.M. Garcia, I.C. Trindade, P. Capelari-Oliveira, T.G. Pontifice, J.M.C. Vilela, M.S. Andrade, B. Nottelet, B.B. Postacchini, V.C.F. Mosqueira, Phthalocyanine photosensitizer in polyethylene glycol-block-poly (lactide-co-benzyl glycidyl ether) nanocarriers:Probing the contribution of aromatic donor-acceptor interactions in polymeric nanospheres, Mater. Sci. Eng. C-Mater. 94(2019) 220-233. [100] C. Schmitt, B. Grassl, G. Lespes, J. Desbrières, V. Pellerin, S. Reynaud, J. Gigault, V.A. Hackley, Saponins:A renewable and biodegradable surfactant from its microwave-assisted extraction to the synthesis of monodisperse lattices, Biomacromolecules 15(3) (2014) 856-862. [101] K.I. Suresh, E. Bartsch, Effect of seed characteristics on morphology development in poly(n-butyl acrylate)-poly(n-butyl methacrylate) coreshell dispersions, J. Appl. Polym. Sci. 127(1) (2013) 208-216. [102] S. Carro, J. Herrera-Ordonez, J. Castillo-Tejas, On the evolution of the rate of polymerization, number and size distribution of particles in styrene emulsion polymerization above CMC, J. Polym. Sci. Pol. Chem. 48(14) (2010) 3152-3160. [103] Y.Q. Xiao, Z.Q. Tan, Y.G. Yin, X.R. Guo, J.W. Xu, B.W. Wang, H.L. Fan, J.F. Liu, Application of hollow fiber flow field-flow fractionation with UV-Vis detection in the rapid characterization and preparation of poly(vinyl acetate) nanoemulsions, Microchem. J. 137(2018) 376-380. [104] S. Lee, C.H. Eum, S. Choi, W. Kim, Synthesis of silica nanoparticles for the manufacture of porous carbon membrane and particle size analysis by sedimentation field-flow fractionation, Bull. Korean Chem. Soc. 37(11) (2016) 1831-1837. [105] R.J. Hunter, Emulsions, latices and dispersions, J. Colloid Interface Sci. 72(1) (1979) 175-176. [106] L.E. Oppenheimer, Interpretation of disk centrifuge data, J. Colloid Interface Sci. 92(2) (1983) 350-357. [107] P.C. Yang, S.P. Armes, Synthesis and characterization of novel polyacidstabilized latexes, Langmuir 28(37) (2012) 13189-13200. [108] L.A. Fielding, O.O. Mykhaylyk, S.P. Armes, P.W. Fowler, V. Mittal, S. Fitzpatrick, Correcting for a density distribution:Particle size analysis of core-shell nanocomposite particles using disk centrifuge photosedimentometry, Langmuir 28(5) (2012) 2536-2544. [109] D. Dupin, S. Fujii, S.P. Armes, P. Reeve, S.M. Baxter, Efficient synthesis of sterically stabilized pH-responsive microgels of controllable particle diameter by emulsion polymerization, Langmuir 22(7) (2006) 3381-3387. [110] A. Schmid, S. Fujii, S.P. Armes, Synthesis of micrometer-sized silica-stabilized polystyrene latex particles, Langmuir 21(18) (2005) 8103-8105. [111] M.J. Percy, V. Michailidou, S.P. Armes, C. Perruchot, J.F. Watts, S.J. Greaves, Synthesis of vinyl polymer-silica colloidal nanocomposites via aqueous dispersion polymerization, Langmuir 19(6) (2003) 2072-2079. [112] C.D. Craver, T. Provder, Polymer Characterization:Physical Property, Spectroscopic, and Chromatographic Method, American Chemical Society, Washington, 1990. [113] V. Liotta, C. Georgakis, E.D. Sudol, M.S. El-Aasser, Manipulation of competitive growth for particle size control in emulsion polymerization, Ind. Eng. Chem. Res. 36(8) (1997) 3252-3263. [114] M.J. Park, M.T. Dokucu, F.J. Doyle, Regulation of the emulsion particle size distribution to an optimal trajectory using partial least squares model-based predictive control, Ind. Eng. Chem. Res. 43(23) (2004) 7227-7237. [115] A.M. Alb, R. Farinato, J. Calbick, W.F. Reed, Online monitoring of polymerization reactions in inverse emulsions, Langmuir 22(2) (2006) 831-840. [116] A. Chemtob, B. Kunstler, C. Croutxé-Barghorn, S. Fouchard, Photoinduced miniemulsion polymerization, Colloid Polym. Sci. 288(5) (2010) 579-587. [117] N.H.N. Hadzir, S. Dong, R.P. Kuchel, F.P. Lucien, P.B. Zetterlund, Mechanistic aspects of aqueous heterogeneous radical polymerization of styrene under compressed CO2, Macromol. Chem. Phys. 218(14) (2017) 1700128. [118] C. Houben, G. Nurumbetov, D. Haddleton, A.A. Lapkin, Feasibility of the simultaneous determination of monomer concentrations and particle size in emulsion polymerization using in situ Raman Spectroscopy, Ind. Eng. Chem. Res. 54(51) (2015) 12867-12876. [119] S. Ghasemi, M.T. Darestani, Z. Abdollahi, V.G. Gomes, Online monitoring of emulsion polymerization using electrical impedance spectroscopy, Polym. Int. 64(1) (2015) 66-75. [120] W.K. Silva, D.L. Chicoma, R. Giudici, In-situ real-time monitoring of particle size, polymer, and monomer contents in emulsion polymerization of methyl methacrylate by near infrared spectroscopy, Polym. Eng. Sci. 51(10) (2011) 2024-2034. [121] S. Kozempel, K. Tauer, G. Rother, Aqueous heterophase polymerization of styrene-A study by means of multi-angle laser light scattering, Polymer 46(4) (2005) 1169-1179. [122] E. Frauendorfer, A. Wolf, W.D. Hergeth, Polymerization online monitoring, Chem. Eng. Technol. 33(11) (2010) 1767-1778. [123] A. Zubov, O. Naeem, S.O. Hauger, A. Bouaswaig, F. Gjertsen, P. Singstad, K.D. Hungenberg, J. Kosek, Bringing the on-line control and optimization of semibatch emulsion copolymerization to the pilot plant, Macromol. React. Eng. 11(4) (2017) 1700014. [124] V.G. Gomes, Advanced monitoring and control of multi-monomer system in emulsion polymerization, Macromol. React. Eng. 4(11-12) (2010) 672-681. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||