[1] X. Shen, X. Cheng, P. Shi, J. Huang, X. Zhang, C. Yan, T. Li, Q. Zhang, Lithiummatrix composite anode protected by a solid electrolyte layer for stable lithium metal batteries, J. Energy Chem. 37(2019) 29-34. [2] V. Etacheri, R. Marom, R. Elazari, G. Salitra, D. Aurbach, Challenges in the development of advanced li-ion batteries:A review, Energy Environ. Sci. 4(9) (2011) 3243. [3] G. Wang, L. Yi, R. Yu, X. Wang, Y.u. Wang, Z. Liu, B. Wu, M. Liu, X. Zhang, X. Yang, X. Xiong, M. Liu, Li1.2Ni0.13Co0.13Mn0.54O2 with controllable morphology and size for high performance lithium-ion batteries, ACS Appl. Mater. Interfaces 9(30) (2017) 25358-25368. [4] Z. Gong, Y. Yang, Recent advances in the research of polyanion-type cathode materials for Li-ion batteries, Energy Environ. Sci. 4(9) (2011) 3223. [5] G. Liang, V.K. Peterson, K.W. See, Z.P. Guo, W.K. Pang, Developing high-voltage spinel LiNi0.5Mn1.5O4 cathodes for high-energy density lithium-ion batteries:current achievements and future prospects, J. Mater. Chem. A 8(2020) 15373- 15398. [6] H. Li, X. Wei, P. Yang, Y. Ren, S. Wang, Y. Xing, S. Zhang, Uniform Li1.2Ni0.13- Co0.13Mn0.54O2 hollow microspheres with improved electrochemical performance by a facile solvothermal method for lithium-ion batteries, Electrochim. Acta 261(2018) 86-95. [7] N.P.W. Pieczonka, Z. Liu, P. Lu, K.L. Olson, J. Moote, B.R. Powell, J.-H. Kim, Understanding transition-metal dissolution behavior in LiNi0.5Mn1.5O4 highvoltage Spinel for lithium-ion batteries, J. Phys. Chem. C 117(31) (2013) 15947-15957. [8] M. Xu, L. Zhou, Y. Dong, Y. Chen, J. Demeaux, A.D. MacIntosh, A. Garsuch, B.L. Lucht, Development of novel lithium borate additives for designed surface modification of high voltage LiNi0.5Mn1.5O4 cathodes, Energy Environ. Sci. 9(4) (2016) 1308-1319. [9] M. Armand, J.-M. Tarascon, Building better batteries, Nature 451(7179) (2008) 652-657. [10] J.-M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries, Nature 414(6861) (2001) 359-367. [11] J.B. Goodenough, Y. Kim, Challenges for rechargeable Li batteries, Chem. Mater. 22(2010) 587-603. [12] B. Dunn, H. Kamath, J.M. Tarascon, Electrical energy storage for the grid:a battery of choices, Science 334(2011) 928-935. [13] R. Marom, S.F. Amalraj, N. Leifer, D. Jacob, D. Aurbach, A review of advanced and practical lithium battery materials, J. Mater. Chem. 21(27) (2011) 9938. [14] J.L. Shi, D.D. Xiao, M.Y. Ge, X.Q. Yu, Y. Chu, X.J. Huang, X.D. Zhang, Y.X. Yin, X.Q. Yang, Y.G. Guo, L. Gu, L.J. Wan, High-capacity cathode material with high voltage for li-ion batteries, Adv. Mater. 30(2018) 1705575. [15] Z. Lu, D.D. MacNeil, J.R. Dahn, Layered Li[NixCo1-2xMnx]O2 cathode materials for lithium-ion batteries, Electrochem. Solid-State Lett. 4(2001) A200-A203. [16] S. Hu, A.S. Pillai, G. Liang, W.K. Pang, H. Wang, Q. Li, Z. Guo, Li-rich layered oxides and their practical challenges:recent progress and perspectives, Electrochem. Energy Rev. 2(2) (2019) 277-311. [17] Z. Lu, L.Y. Beaulieu, R.A. Donaberger, C.L. Thomas, J.R. Dahn, Synthesis, structure, and electrochemical behavior of Li[NixLi1/3-2x/3]O2, J. Electrochem. Soc. 149(2002) A778-A791. [18] M.M. Thackeray, C.S. Johnson, J.T. Vaughey, N. Li, S.A. Hackney, Advances in manganese-oxide 'composite' electrodes for lithium-ion batteries, J. Mater. Chem. 15(2005) 2257. [19] F. Wang, L. Suo, Y. Liang, C. Yang, F. Han, T. Gao, W. Sun, C. Wang, Spinel LiNi0.5Mn1.5O4 cathode for high-energy aqueous lithium-ion batteries, Adv. Energy Mater. 7(2017) 1600922. [20] J.P. Pender, G. Jha, D.H. Youn, J.M. Ziegler, I. Andoni, E.J. Choi, A. Heller, B.S. Dunn, P.S. Weiss, R.M. Penner, C.B. Mullins, Electrode degradation in lithiumion batteries, ACS Nano 14(2) (2020) 1243-1295. [21] J. Cheng, X. Li, Z. Wang, H. Guo, Hydrothermal synthesis of LiNi0.5Mn1.5O4 sphere and its performance as high-voltage cathode material for lithium-ion batteries, Ceram. Int. 42(2) (2016) 3715-3719. [22] X. Qin, M. Zhou, B. Zong, J. Guo, J. Gong, L. Wang, G. Liang, Urea-assisted hydrothermal synthesis of a hollow hierarchical LiNi0.5Mn1.5O4 cathode material with tunable morphology characteristics, RSC Adv. 8(53) (2018) 30087-30097. [23] K. Ariyoshi, Y. Iwakoshi, N. Nakayama, T. Ohzuku, Topotactic two-phase reactions of Li[Ni1/2Mn3/2]O4 (P4332) in nonaqueous lithium cells, J. Electrochem. Soc. 151(2004) A296-A303. [24] J.H. Kim, S.T. Myung, C.S. Yoon, S.G. Kang, Y.K. Sun, Comparative study of LiNi0.5Mn1.5O4-δ and LiNi0.5Mn1.5O4 cathodes having two crystallographic structures:Fd_3m and P4332, Chem. Mater. 16(2004) 906-914. [25] G. Liang, C. Didier, Z. Guo, W.K. Pang, V.K. Peterson, Understanding rechargeable battery function using in operando neutron powder diffraction, Adv. Mater. 32(18) (2020) 1904528. [26] W.K. Pang, H.-F. Lin, V.K. Peterson, C.-Z. Lu, C.-E. Liu, S.-C. Liao, J.-M. Chen, Enhanced rate-capability and cycling-stability of 5 V SiO2- and polyimidecoated cation ordered LiNi0.5Mn1.5O4 lithium-ion battery positive electrodes, J. Phys. Chem. C 121(7) (2017) 3680-3689. [27] T.-F. Yi, J. Mei, Y.-R. Zhu, Key strategies for enhancing the cycling stability and rate capacity of LiNi0.5Mn1.5O4 as high-voltage cathode materials for high power lithium-ion batteries, J. Power Sources 316(2016) 85-105. [28] X. Qin, J. Gong, J. Guo, B.o. Zong, M. Zhou, L.i. Wang, G. Liang, Synthesis and performance of LiNi0.5Mn1.5O4 cathode materials with different particle morphologies and sizes for lithium-ion battery, J. Alloys Compd. 786(2019) 240-249. [29] H. Liu, J. Wang, X. Zhang, D. Zhou, X. Qi, B. Qiu, J. Fang, R. Kloepsch, G. Schumacher, Z. Liu, J. Li, Morphological evolution of high-voltage spinel LiNi0.5Mn1.5O4 cathode materials for lithium-ion batteries:The critical effects of surface orientations and particle size, ACS Appl. Mater. Interfaces 8(7) (2016) 4661-4675. [30] E. Zhao, L. Wei, Y. Guo, Y. Xu, W. Yan, D. Sun, Y. Jin, Rapid hydrothermal and post-calcination synthesis of well-shaped LiNi0.5Mn1.5O4 cathode materials for lithium-ion batteries, J. Alloys Compd. 695(2017) 3393-3401. [31] H.-K. Song, H.-Y. Hwang, K.-H. Lee, L.H. Dao, The effect of pore size distribution on the frequency dispersion of porous electrodes, Electrochim. Acta 45(14) (2000) 2241-2257. [32] H.-Q. Wang, F.-Y. Lai, Y.u. Li, X.-H. Zhang, Y.-G. Huang, S.-J. Hu, Q.-Y. Li, Excellent stability of spinel LiMn2O4-based cathode materials for lithium-ion batteries, Electrochim. Acta 177(2015) 290-297. [33] J. Huang, H. Liu, N. Zhou, K. An, Y.S. Meng, J. Luo, Enhancing the Ion Transport in LiMn1.5Ni0.5O4 by Altering the Particle Wulff Shape via Anisotropic Surface Segregation, ACS Appl. Mater. Interfaces 9(2017) 36745-36754. [34] J.F. Wang, D. Chen, W. Wu, L. Wang, G. Liang, Effects of Na+ doping on crystalline structure and electrochemical performances of LiNi0.5Mn1.5O4 cathode material, Trans. Nonferrous Met. Soc. China 27(2017) 2239-2248. [35] Y. Wang, L. Chen, Y. Wang, Y. Xia, Cycling stability of spinel LiMn2O4 with different particle sizes in aqueous electrolyte, Electrochim. Acta 173(2015) 178-183. [36] W. Wu, X. Qin, J. Guo, J. Wang, H. Yang, L. Wang, Influence of cerium doping on structure and electrochemical properties of LiNi0.5Mn1.5O4 cathode materials, J. Rare Earths 35(2017) 887-895. [37] T. Yang, N. Zhang, Y. Lang, K. Sun, Enhanced rate performance of carbon coated LiNi0.5Mn1.5O4 cathode material for lithium-ion batteries, Electrochim. Acta 56(2011) 4058-4064. [38] L. Wang, H. Li, X. Huang, E. Baudrin, A comparative study of Fd-3m and P4332''LiNi0.5Mn1.5O4", Solid State Ionics 193(1) (2011) 32-38. [39] W. Sun, Y. Li, K. Xie, S. Luo, G. Bai, X. Tan, C. Zheng, Constructing hierarchical urchin-like LiNi0.5Mn1.5O4 hollow spheres with exposed {111} facets as advanced cathode material for lithium-ion batteries, Nano Energy 54(2018) 175-183. |