[1] S.M. Burkinshaw, O. Kabambe, Attempts to reduce water and chemical usage in the removal of bifunctional reactive dyes from cotton: Part 2 bis(vinyl sulfone), aminochlorotriazine/vinyl sulfone and bis(aminochlorotriazine/vinyl sulfone) dyes, Dye Pigment. 88(2) (2011) 220–229. [2] W.Y. Ye, J.Y. Lin, R. Borrego, D. Chen, A. Sotto, P. Luis, M.H. Liu, S.F. Zhao, C.Y. Tang, B. van der Bruggen, Advanced desalination of dye/NaCl mixtures by a loose nanofiltration membrane for digital ink-jet printing, Sep. Purif. Technol. 197(2018) 27–35. [3] D. Zou, X.F. Chen, M.H. Qiu, E. Drioli, Y.Q. Fan, Flux-enhanced a-alumina tight ultrafiltration membranes for effective treatment of dye/salt wastewater at high temperatures, Sep. Purif. Technol. 215(2019) 143–154. [4] R.L. Singh, P.K. Singh, R.P. Singh, Enzymatic decolorization and degradation of azo dyes—A review, Int. Biodeterior. Biodegrad. 104(2015) 21–31. [5] S.K. Sen, S. Raut, P. Bandyopadhyay, S. Raut, Fungal decolouration and degradation of azo dyes: A review, Fungal Biol. Rev. 30(3) (2016) 112–133. [6] C. Hildebrand, V.B. Kuglin, H.L. Brandao, V.J.P. Vilar, S.M.A. Guelli Ulson de Souza, A.A. Ulson de Souza, Insights into nanofiltration of textile wastewaters for water reuse, Clean Technol. Environ. Policy 16(3) (2014) 591–600. [7] R.L. Han, Formation and characterization of (melamine-TMC) based thin film composite NF membranes for improved thermal and chlorine resistances, J. Membr. Sci. 425–426(2013) 176–181. [8] E. Zuriaga-Agustí, E. Alventosa-deLara, S. Barredo-Damas, M.I. AlcainaMiranda, M.I. Iborra-Clar, J.A. Mendoza-Roca, Performance of ceramic ultrafiltration membranes and fouling behavior of a dye-polysaccharide binary system, Water. Res. 54(2014) 199–210. [9] K.M. Majewska-Nowak, Application of ceramic membranes for the separation of dye particles, Desalination 254(1–3) (2010) 185–191. [10] P.L. Chen, X. Ma, Z.X. Zhong, F. Zhang, W.H. Xing, Y.Q. Fan, Performance of ceramic nanofiltration membrane for desalination of dye solutions containing NaCl and Na2SO4, Desalination 404(2017) 102–111. [11] X. Ma, P.L. Chen, M. Zhou, Z.X. Zhong, F. Zhang, W.H. Xing, Tight ultrafiltration ceramic membrane for separation of dyes and mixed salts (both NaCl/Na2SO4) in textile wastewater treatment, Ind. Eng. Chem. Res. 56(24) (2017) 7070–7079. [12] S.Y. Park, Y.J. Kim, S.Y. Kwak, Versatile surface charge-mediated anti-fouling UF/MF membrane comprising charged hyperbranched polyglycerols (HPGs) and PVDF membranes, RSC Adv. 6(92) (2016) 88959–88966. [13] T.T.V. Tran, S.R. Kumar, S.J. Lue, Separation mechanisms of binary dye mixtures using a PVDF ultrafiltration membrane: Donnan effect and intermolecular interaction, J. Membr. Sci. 575(2019) 38–49. [14] X.Z. Wei, S.X. Wang, Y.Y. Shi, H. Xiang, J.Y. Chen, Application of positively charged composite hollow-fiber nanofiltration membranes for dye purification, Ind. Eng. Chem. Res. 53(36) (2014) 14036–14045. [15] R.N. Zhang, Y.L. Su, X.T. Zhao, Y.F. Li, J.J. Zhao, Z.Y. Jiang, A novel positively charged composite nanofiltration membrane prepared by bio-inspired adhesion of polydopamine and surface grafting of poly(ethylene imine), J. Membr. Sci. 470(2014) 9–17. [16] T. Moritz, S. Benfer, P. Árki, G. Tomandl, Influence of the surface charge on the permeate flux in the dead-end filtration with ceramic membranes, Sep. Purif. Technol. 25(1–3) (2001) 501–508. [17] P. Árki, C. Hecker, G. Tomandl, Y. Joseph, Streaming potential properties of ceramic nanofiltration membranes— Importance of surface charge on the ion rejection, Sep. Purif. Technol. 212(2019) 660–669. [18] N.W. Gao, W. Fan, Z.K. Xu, Ceramic membrane with protein-resistant surface via dopamine/diglycolamine co-deposition, Sep. Purif. Technol. 234(2020) 116135. [19] S.P. Pujari, L. Scheres, A.T.M. Marcelis, H. Zuilhof, Covalent surface modification of oxide surfaces, Angew. Chem. Int. Ed. 53(25) (2014) 6322–6356. [20] C. Bandl, W. Kern, N. Krempl, W. Friesenbichler, Simple and rapid method for restoring anti-adhesive organosilane coatings on metal substrates, Prog. Org. Coat. 140(2020) 105490. [21] J. Lee, J.H. Ha, I.H. Song, Improving the antifouling properties of ceramic membranes via chemical grafting of organosilanes, Sep. Sci. Technol. 51(14) (2016) 2420–2428. [22] J. Bartels, M.N. Souza, A. Schaper, P. Árki, S. Kroll, K. Rezwan, Aminofunctionalized ceramic capillary membranes for controlled virus retention, Environ. Sci. Technol. 50(4) (2016) 1973–1981. [23] Q.L. Gu, T.C.A. Ng, L. Zhang, Z.Y. Lyu, Z.X. Zhang, H.Y. Ng, J. Wang, Interfacial diffusion assisted chemical deposition (ID-CD) for confined surface modification of alumina microfiltration membranes toward high-flux and anti-fouling, Sep. Purif. Technol. 235(2020) 116177. [24] T. van Gestel, B. van der Bruggen, A. Buekenhoudt, C. Dotremont, J. Luyten, C. Vandecasteele, G. Maes, Surface modification of c-Al2O3/TiO2 multilayer membranes for applications in non-polar organic solvents, J. Membr. Sci. 224(1–2) (2003) 3–10. [25] X.W. Da, D. Zou, X.F. Chen, M.H. Qiu, W. Ke, Y.Q. Fan, Influence of compatibility between sol and intermediate layer on the performance of yttria-stabilized zirconia nanofiltration membrane, Ceram. Int. 47(16) (2021) 22801–22809. [26] M. Ostwal, R.P. Singh, S.F. Dec, M.T. Lusk, J.D. Way, 3-Aminopropyltriethoxysilane functionalized inorganic membranes for high temperature CO2/N2 separation, J. Membr. Sci. 369(1–2) (2011) 139–147. [27] J. Zhang, J. Hoogboom, P.H.J. Kouwer, A.E. Rowan, T. Rasing, Uniform N-(2-aminoethyl)(3-aminopropyl)trimethoxysilane monolayer growth in water, J. Phys. Chem. C 112(51) (2008) 20105–20108. [28] H.L. Guo, S.F. Zhao, X.X. Wu, H. Qi, Fabrication and characterization of TiO2/ZrO2 ceramic membranes for nanofiltration, Micropor. Mesopor. Mater. 260(2018) 125–131. [29] M.H. Qiu, R.A. Bauer, M.T. Snider, Z. Yang, Y. Zhou, H. Verweij, Preparation and nanofiltration properties of thin supported meso-porous ceria membranes, J. Membr. Sci. 598(2020) 117781. [30] Z. Wang, K. Xiao, X.M. Wang, Role of coexistence of negative and positive membrane surface charges in electrostatic effect for salt rejection by nanofiltration, Desalination 444(2018) 75–83. [31] W.J. Shang, X.L. Wang, Y.X. Yu, Theoretical calculation on the membrane potential of charged porous membranes in 1–1, 1–2, 2–1 and 2–2 electrolyte solutions, J. Membr. Sci. 285(1–2) (2006) 362–375. [32] R. Weber, H. Chmiel, V. Mavrov, Characteristics and application of new ceramic nanofiltration membranes, Desalination 157(1–3) (2003) 113–125. [33] M.J. Citra, Estimating the pKa of phenols, carboxylic acids and alcohols from semi-empirical quantum chemicalmethods, Chemosphere 38(1) (1999) 191–206. [34] Y.P. Guo, J.Z. Zhao, H. Zhang, S.F. Yang, J.R. Qi, Z.C. Wang, H.D. Xu, Use of rice husk-based porous carbon for adsorption of Rhodamine B from aqueous solutions, Dye. Pigment. 66(2) (2005) 123–128. |