[1] Z.W. Seh, J. Kibsgaard, C.F. Dickens, I. Chorkendorff, J.K. Nørskov, T.F. Jaramillo, Combining theory and experiment in electrocatalysis: Insights into materials design, Science 355(2017) eaad4998. [2] J. Kibsgaard, I. Chorkendorff, Considerations for the scaling-up of water splitting catalysts, Nat. Energy 4(2019) 430–433. [3] C.L. Hu, L. Zhang, J.L. Gong, Recent progress made in the mechanism comprehension and design of electrocatalysts for alkaline water splitting, Energy Environ. Sci. 12(2019) 2620–2645. [4] F.L. Lyu, Q.F. Wang, S.M. Choi, Y.D. Yin, Noble-metal-free electrocatalysts for oxygen evolution, Small 15(2019) 1804201. [5] Z.P. Wu, X.F. Lu, S.Q. Zang, X.W.D. Lou, Non-noble-metal-based electrocatalysts toward the oxygen evolution reaction, Adv. Funct. Mater. 30(2020) 1910274. [6] T. Ouyang, X.T. Wang, X.Q. Mai, A.N. Chen, Z.Y. Tang, Z.Q. Liu, Coupling magnetic single-crystal Co2Mo3O8 with ultrathin nitrogen-rich carbon layer for oxygen evolution reaction, Angew. Chem. Int. Ed. 59(2020) 11948–11957. [7] D. He, X.Y. Song, W.Q. Li, C.Y. Tang, J.C. Liu, Z.J. Ke, C.Z. Jiang, X.H. Xiao, Active electron density modulation of Co3O4-based catalysts enhances their oxygen evolution performance, Angew. Chem. Int. Ed. 59(2020) 6929–6935. [8] J.Y. Xu, J.J. Li, D.H. Xiong, B.S. Zhang, Y.F. Liu, K.H. Wu, I. Amorim, W. Li, L.F. Liu, Trends in activity for the oxygen evolution reaction on transition metal (M = Fe Co, Ni) phosphide pre-catalysts, Chem. Sci. 9(2018) 3470–3476. [9] H.W. Man, C.S. Tsang, M.M. Li, J.Y. Mo, B.L. Huang, L.Y.S. Lee, Y.C. Leung, K.Y. Wong, S.C.E. Tsang, Tailored transition metal-doped nickel phosphide nanoparticles for the electrochemical oxygen evolution reaction (OER), Chem. Commun. 54(2018) 8630–8633. [10] K. Yan, Y.R. Lu, Direct growth of MoS2 microspheres on Ni foam as a hybrid nanocomposite efficient for oxygen evolution reaction, Small 12(2016) 2975–2981. [11] D.H. Xiong, Q.Q. Zhang, W. Li, J.J. Li, X.L. Fu, M.F. Cerqueira, P. Alpuim, L.F. Liu, Atomic-layer-deposited ultrafine MoS2 nanocrystals on cobalt foam for efficient and stable electrochemical oxygen evolution, Nanoscale 9(2017) 2711–2717. [12] K. Wan, J.S. Luo, C. Zhou, T. Zhang, J. Arbiol, X.H. Lu, B.W. Mao, X. Zhang, J. Fransaer, Hierarchical porous Ni3S4 with enriched high-valence Ni sites as a robust electrocatalyst for efficient oxygen evolution reaction, Adv. Funct. Mater. 29(2019) 1900315. [13] X. Xu, F. Song, X. Hu, A nickel iron diselenide-derived efficient oxygenevolution catalyst, Nat. Commun. 7(2016) 12324. [14] Y.H. Dou, C.T. He, L. Zhang, H.J. Yin, M. Al-Mamun, J.M. Ma, H.J. Zhao, Approaching the activity limit of CoS2 for oxygen evolution via Fe doping and Co vacancy, Nat. Commun. 11(2020) 1664. [15] Z.K. Kou, T.T. Wang, Q.L. Gu, M. Xiong, L.R. Zheng, X. Li, Z.H. Pan, H. Chen, F. Verpoort, A.K. Cheetham, S.C. Mu, J. Wang, Rational design of holey 2D nonlayered transition metal carbide/nitride heterostructure nanosheets for highly efficient water oxidation, Adv. Energy Mater. 9(2019) 1803768. [16] Q.R. Liang, H.H. Jin, Z. Wang, Y.L. Xiong, S. Yuan, X.C. Zeng, D.P. He, S.C. Mu, Metal-organic frameworks derived reverse-encapsulation Co-NC@Mo2C complex for efficient overall water splitting, Nano Energy 57(2019) 746–752. [17] T. Ouyang, Y.Q. Ye, C.Y. Wu, K. Xiao, Z.Q. Liu, Heterostructures composed of Ndoped carbon nanotubes encapsulating cobalt and b-Mo2C nanoparticles as bifunctional electrodes for water splitting, Angew. Chem. Int. Ed. 58(2019) 4923–4928. [18] M.R. Gao, Y.R. Zheng, J. Jiang, S.H. Yu, Pyrite-type nanomaterials for advanced electrocatalysis, Acc. Chem. Res. 50(2017) 2194–2204. [19] C.R. Zhu, D.Q. Gao, J. Ding, D.L. Chao, J. Wang, TMD-based highly efficient electrocatalysts developed by combined computational and experimental approaches, Chem. Soc. Rev. 47(2018) 4332–4356. [20] P.Z. Chen, Y. Tong, C.Z. Wu, Y. Xie, Surface/interfacial engineering of inorganic low-dimensional electrode materials for electrocatalysis, Acc. Chem. Res. 51(2018) 2857–2866. [21] J. Zhang, Q.Y. Zhang, X.L. Feng, Support and interface effects in water-splitting electrocatalysts, Adv. Mater. 31(2019) 1808167. [22] X.C. Du, J.W. Huang, J.J. Zhang, Y.C. Yan, C.Y. Wu, Y. Hu, C.Y. Yan, T. Lei, W. Chen, C. Fan, J. Xiong, Modulating electronic structures of inorganic nanomaterials for efficient electrocatalytic water splitting, Angew. Chem. Int. Ed. 58(2019) 4484–4502. [23] S. Ni, H.N. Qu, H.F. Xing, Z.H. Xu, X.Y. Zhu, M.L. Yuan, L. Wang, J.M. Yu, Y.Q. Li, L. R. Yang, H.Z. Liu, Donor-acceptor couples of metal and metal oxides with enriched Ni3+ active sites for oxygen evolution, ACS Appl. Mater. Interfaces 13(2021) 17501–17510. [24] X.Y. Ding, W.W. Li, H.P. Kuang, M. Qu, M.Y. Cui, C.H. Zhao, D.C. Qi, F.E. Oropeza, K.H.L. Zhang, An Fe stabilized metallic phase of NiS2 for the highly efficient oxygen evolution reaction, Nanoscale 11(2019) 23217–23225. [25] Y. Wu, F. Li, W.L. Chen, Q. Xiang, Y.L. Ma, H. Zhu, P. Tao, C.Y. Song, W. Shang, T. Deng, J.B. Wu, Coupling interface constructions of MoS2/Fe5Ni4S8 heterostructures for efficient electrochemical water splitting, Adv. Mater. 30(2018) 1803151. [26] Y.Yang,H.Q.Yao,Z.H.Yu,S.M.Islam,H.Y.He,M.W.Yuan,Y.H.Yue,K.Xu,W.C.Hao, G.B. Sun, H.F. Li, S.L. Ma, P. Zapol, M.G. Kanatzidis, Hierarchical nanoassembly of MoS2/Co9S8/Ni3S2/Ni as a highly efficient electrocatalyst for overall water splitting in a wide pH range, J. Am. Chem. Soc. 141(2019) 10417–10430. [27] J. Yin, Y.X. Li, F. Lv, M. Lu, K. Sun, W. Wang, L. Wang, F.Y. Cheng, Y.F. Li, P.X. Xi, S. J. Guo, Oxygen vacancies dominated NiS2/CoS2 interface porous nanowires for portable Zn-air batteries driven water splitting devices, Adv. Mater. 29(2017) 1704681. [28] G.Q. Zhao, K. Rui, S.X. Dou, W.P. Sun, Boosting electrochemical water oxidation: the merits of heterostructured electrocatalysts, J. Mater. Chem. A 8(2020) 6393–6405. [29] C.C. Li, Y.W. Liu, Z.W. Zhuo, H.X. Ju, D. Li, Y.P. Guo, X.J. Wu, H.Q. Li, T.Y. Zhai, Local charge distribution engineered by Schottky heterojunctions toward urea electrolysis, Adv. Energy Mater. 8(2018) 1801775. [30] Z.C. Zhuang, Y. Li, Z.L. Li, F. Lv, Z.Q. Lang, K.N. Zhao, L. Zhou, L. Moskaleva, S.J. Guo, L.Q. Mai, MoB/g-C3N4 interface materials as a Schottky catalyst to boost hydrogen evolution, Angew. Chem. Int. Ed. 57(2018) 496–500. [31] C.X. Li, S.H. Dong, R. Tang, X.L. Ge, Z.W. Zhang, C.X. Wang, Y.P. Lu, L.W. Yin, Heteroatomic interface engineering in MOF-derived carbon heterostructures with built-in electric-field effects for high performance Al-ion batteries, Energy Environ. Sci. 11(2018) 3201–3211. [32] J.F. Ni, M.L. Sun, L. Li, Highly efficient sodium storage in iron oxide nanotube arrays enabled by built-in electric field, Adv. Mater. 31(2019) 1902603. [33] D. Ma, B. Hu, W.D. Wu, X. Liu, J.T. Zai, C. Shu, T. Tadesse Tsega, L.W. Chen, X.F. Qian, T.L. Liu, Highly active nanostructured CoS2/CoS heterojunction electrocatalysts for aqueous polysulfide/iodide redox flow batteries, Nat. Commun. 10(2019) 3367. [34] K. He, T. Tadesse Tsega, X. Liu, J.T. Zai, X.H. Li, X.J. Liu, W.H. Li, N. Ali, X.F. Qian, Utilizing the space-charge region of the FeNi-LDH/CoP p-n junction to promote performance in oxygen evolution electrocatalysis, Angew. Chem. Int. Ed. 58(2019) 11903–11909. [35] Y.F. Zhao, X.D. Jia, G.B. Chen, L. Shang, G.I. Waterhouse, L.Z. Wu, C.H. Tung, D. O’Hare, T.R. Zhang, Ultrafine NiO nanosheets stabilized by TiO2 from monolayer NiTi-LDH precursors: an active water oxidation electrocatalyst, J. Am. Chem. Soc. 138(2016) 6517–6524. [36] J.X. Feng, J.Q. Wu, Y.X. Tong, G.R. Li, Efficient hydrogen evolution on Cu nanodots-decorated Ni3S2 nanotubes by optimizing atomic hydrogen adsorption and desorption, J. Am. Chem. Soc. 140(2018) 610–617. [37] M.J. Yang, Y. Zhang, J.H. Jian, L. Fang, J. Li, Z.S. Fang, Z.K. Yuan, L.M. Dai, X.D. Chen, D.S. Yu, Donor-acceptor nanocarbon ensembles to boost metal-free allpH hydrogen evolution catalysis by combined surface and dual electronic modulation, Angew. Chem. Int. Ed. 58(2019) 16217–16222. [38] Y.X. Liu, H.H. Wang, T.J. Zhao, B. Zhang, H. Su, Z.H. Xue, X.H. Li, J.S. Chen, Schottky barrier induced coupled interface of electron-rich N-doped carbon and electron-deficient Cu: in-built lewis acid-base pairs for highly efficient CO2 fixation, J. Am. Chem. Soc. 141(2019) 38–41. [39] M.L. Yuan, S. Dipazir, M. Wang, Y. Sun, D.L. Gao, Y.L. Bai, M. Zhang, P.L. Lu, H.Y. He, X.Y. Zhu, S.W. Li, Z.J. Liu, Z.P. Luo, G.J. Zhang, Polyoxometalate-assisted formation of CoSe/MoSe2 heterostructures with enhanced oxygen evolution activity, J. Mater. Chem. A 7(2019) 3317–3326. [40] G.G. Liu, P. Li, G.X. Zhao, X. Wang, J.T. Kong, H.M. Liu, H.B. Zhang, K. Chang, X.G. Meng, T. Kako, J.H. Ye, Promoting active species generation by plasmoninduced hot-electron excitation for efficient electrocatalytic oxygen evolution, J. Am. Chem. Soc. 138(2016) 9128–9136. [41] W.C. Hu, Y. Shi, Y. Zhou, C. Wang, M.R. Younis, J. Pang, C. Wang, X.H. Xia, Plasmonic hot charge carriers activated Ni centres of metal–organic frameworks for the oxygen evolution reaction, J. Mater. Chem. A 7(2019) 10601–10609. [42] Z.Y. Chen, Y. Song, J.Y. Cai, X.S. Zheng, D.D. Han, Y.S. Wu, Y.P. Zang, S.W. Niu, Y. Liu, J.F. Zhu, X.J. Liu, G.M. Wang, Tailoring the d-band centers enables Co4N nanosheets to be highly active for hydrogen evolution catalysis, Angew. Chem. Int. Ed. 57(2018) 5076–5080. [43] R.J. Gao, L. Pan, H.W. Wang, X.W. Zhang, L. Wang, J.J. Zou, Ultradispersed nickel phosphide on phosphorus-doped carbon with tailored d-band center for efficient and chemoselective hydrogenation of nitroarenes, ACS Catal. 8(2018) 8420–8429. [44] Q.Q. Song, J.Q. Li, S.L. Wang, J.L. Liu, X.X. Liu, L.Y. Pang, H. Li, H. Liu, Enhanced electrocatalytic performance through body enrichment of Co-based bimetallic nanoparticles in situ embedded porous N-doped carbon spheres, Small 15(2019) 1903395. [45] H.P. Wang, J. Wang, Y.C. Pi, Q. Shao, Y.M. Tan, X.Q. Huang, Double perovskite LaFexNi1-xO3 nanorods enable efficient oxygen evolution electrocatalysis, Angew. Chem. Int. Ed. 58(2019) 2316–2320. [46] H.J. Liu, Q. He, H.L. Jiang, Y.X. Lin, Y.K. Zhang, M. Habib, S.M. Chen, L. Song, Electronic structure reconfiguration toward pyrite NiS2 via engineered heteroatom defect boosting overall water splitting, ACS Nano 11(2017) 11574–11583. [47] Y. Shi, Y. Zhou, D.R. Yang, W.X. Xu, C. Wang, F.B. Wang, J.J. Xu, X.H. Xia, H.Y. Chen, Energy level engineering of MoS2 by transition-metal doping for accelerating hydrogen evolution reaction, J. Am. Chem. Soc. 139(2017) 15479–15485. [48] T.A. Shifa, F.M. Wang, K.L. Liu, Z.Z. Cheng, K. Xu, Z.X. Wang, X.Y. Zhan, C. Jiang, J. He, Efficient catalysis of hydrogen evolution reaction from WS2(1–x)P2x nanoribbons, Small 13(2017) 1603706. [49] J.H. Lin, P.C. Wang, H.H. Wang, C. Li, X.Q. Si, J.L. Qi, J. Cao, Z.X. Zhong, W.D. Fei, J. C. Feng, Defect-rich heterogeneous MoS2/NiS2 nanosheets electrocatalysts for efficient overall water splitting, Adv. Sci. 6(2019) 1900246. [50] H. Bian, Y.J. Ji, J.Q. Yan, P. Li, L. Li, Y.Y. Li, S. Frank Liu, In situ synthesis of fewlayered g-C3N4 with vertically aligned MoS2 loading for boosting solar-tohydrogen generation, Small 14(2018) 1703003. [51] J. Yang, D. Voiry, S.J. Ahn, D. Kang, A.Y. Kim, M. Chhowalla, H.S. Shin, Twodimensional hybrid nanosheets of tungsten disulfide and reduced graphene oxide as catalysts for enhanced hydrogen evolution, Angew. Chem. Int. Ed. 52(2013) 13751–13754. [52] Q. Qin, L.L. Chen, T. Wei, X.E. Liu, MoS2/NiS yolk-shell microsphere-based electrodes for overall water splitting and asymmetric supercapacitor, Small 15(2019) 1803639. [53] K. Tang, X.F. Wang, Q. Li, C.L. Yan, High edge selectivity of in situ electrochemical Pt deposition on edge-rich layered WS2 nanosheets, Adv. Mater. 30(2018) 1704779. [54] Y.K. Liu, S. Jiang, S.J. Li, L. Zhou, Z.H. Li, J.M. Li, M.F. Shao, Interface engineering of (Ni, Fe)S2@MoS2 heterostructures for synergetic electrochemical water splitting, Appl. Catal. B: Environ. 247(2019) 107–114. [55] P.Y. Kuang, T. Tong, K. Fan, J.G. Yu, In situ fabrication of Ni-Mo bimetal sulfide hybrid as an efficient electrocatalyst for hydrogen evolution over a wide pH range, ACS Catal. 7(2017) 6179–6187. [56] G.C. Yang, Y.Q. Jiao, H.J. Yan, Y. Xie, A.P. Wu, X. Dong, D.Z. Guo, C.G. Tian, H.G. Fu, Interfacial engineering of MoO2-FeP heterojunction for highly efficient hydrogen evolution coupled with biomass electrooxidation, Adv. Mater. 32(2020) e2000455. [57] S.L. Liu, C.J. Che, H.Y. Jing, J. Zhao, X.Q. Mu, S.D. Zhang, C.Y. Chen, S.C. Mu, Phosphorus-triggered synergy of phase transformation and chalcogenide vacancy migration in cobalt sulfide for an efficient oxygen evolution reaction, Nanoscale 12(2020) 3129–3134. [58] B.C. Qiu, C. Wang, N. Zhang, L.J. Cai, Y.J. Xiong, Y. Chai, CeO2-induced interfacial Co2+ octahedral sites and oxygen vacancies for water oxidation, ACS Catal. 9(2019) 6484–6490. [59] S. Zhao, R.X. Jin, H. Abroshan, C.J. Zeng, H. Zhang, S.D. House, E. Gottlieb, H.J. Kim, J.C. Yang, R.C. Jin, Gold nanoclusters promote electrocatalytic water oxidation at the nanocluster/CoSe2 interface, J. Am. Chem. Soc. 139(2017) 1077–1080. [60] J.T. Li, D. Chu, H. Dong, D.R. Baker, R.Z. Jiang, Boosted oxygen evolution reactivity by igniting double exchange interaction in spinel oxides, J. Am. Chem. Soc. 142(2020) 50–54. [61] G.Q. Zhao, P. Li, N.Y. Cheng, S.X. Dou, W.P. Sun, An Ir/Ni(OH)2 heterostructured electrocatalyst for the oxygen evolution reaction: breaking the scaling relation, stabilizing iridium(V), and beyond, Adv. Mater. 32(2020) 2000872. [62] G.W. Li, Q. Yang, J.C. Rao, C.G. Fu, S.C. Liou, G. Auffermann, Y. Sun, C. Felser, In situ induction of strain in iron phosphide (FeP2) catalyst for enhanced hydroxide adsorption and water oxidation, Adv. Funct. Mater. 30(2020) 1907791. [63] Z.Q. Xue, X. Li, Q.L. Liu, M.K. Cai, K. Liu, M. Liu, Z.F. Ke, X.L. Liu, G.Q. Li, Interfacial electronic structure modulation of NiTe nanoarrays with NiS nanodots facilitates electrocatalytic oxygen evolution, Adv. Mater. 31(2019) 1900430. [64] C.L. Qin, A.X. Fan, X. Zhang, S.Q. Wang, X.L. Yuan, X.P. Dai, Interface engineering: few-layer MoS2 coupled to a NiCo-sulfide nanosheet heterostructure as a bifunctional electrocatalyst for overall water splitting, J. Mater. Chem. A 7(2019) 27594–27602. [65] J. Song, Are metal chalcogenides, nitrides, and phosphides oxygen evolution catalysts or bifunctional catalysts?, ACS Energy Lett 2(2017) 1937–1938. [66] Q.H. Liang, L.X. Zhong, C.F. Du, Y.B. Luo, J. Zhao, Y. Zheng, J.W. Xu, J.M. Ma, C.T. Liu, S.Z. Li, Q.Y. Yan, Interfacing epitaxial dinickel phosphide to 2D nickel thiophosphate nanosheets for boosting electrocatalytic water splitting, ACS Nano 13(2019) 7975–7984. [67] X.R. Zheng, X.P. Han, Y.H. Cao, Y. Zhang, D. Nordlund, J.H. Wang, S.L. Chou, H. Liu, L.L. Li, C. Zhong, Y.D. Deng, W.B. Hu, Identifying dense NiSe2/CoSe2 heterointerfaces coupled with surface high-valence bimetallic sites for synergistically enhanced oxygen electrocatalysis, Adv. Mater. 32(2020) 2000607. |