[1] Y.Y. Yue, B. Liu, N. Lv, T.H. Wang, X.T. Bi, H.B. Zhu, P. Yuan, Z.S. Bai, Q.Y. Cui, X.J. Bao, Direct synthesis of hierarchical FeCu-ZSM-5 zeolite with wide temperature window in selective catalytic reduction of NO by NH3, ChemCatChem 11(19) (2019) 4744–4754. [2] A.M. Beale, F. Gao, I. Lezcano-Gonzalez, C.H. Peden, J. Szanyi, Recent advances in automotive catalysis for NOx emission control by small-pore microporous materials, Chem Soc Rev 44(20) (2015) 7371–7405. [3] M. Zhang, B. Huang, H. Jiang, Y. Chen, Research progress in the SO2 resistance of the catalysts for selective catalytic reduction of NOx, Chin. J. Chem. Eng. 25(2017) 1695–1705. [4] J.H. Wang, H.W. Zhao, G. Haller, Y.D. Li, Recent advances in the selective catalytic reduction of NOx with NH3 on Cu-Chabazite catalysts, Appl. Catal. B: Environ. 202(2017) 346–354. [5] W.P. Shan, H. Song, Catalysts for the selective catalytic reduction of NOx with NH3 at low temperature, Catal. Sci. Technol. 5(9) (2015) 4280–4288. [6] F. Gao, C. Peden, Recent progress in atomic-level understanding of Cu/SSZ-13 selective catalytic reduction catalysts, Catalysts 8(4) (2018) 140. [7] F. Gao, E.D. Walter, E.M. Karp, J.Y. Luo, R.G. Tonkyn, J.H. Kwak, J. Szanyi, C.H.F. Peden, Structure-activity relationships in NH3-SCR over Cu-SSZ-13 as probed by reaction kinetics and EPR studies, J. Catal. 300(2013) 20–29. [8] S.T. Korhonen, D.W. Fickel, R.F. Lobo, B.M. Weckhuysen, A.M. Beale, Isolated Cu2+ ions: Active sites for selective catalytic reduction of NO, Chem. Commun. (Camb.) 47(2) (2011) 800–802. [9] A.R. Fahami, T. Günter, D.E. Doronkin, M. Casapu, D. Zengel, T.H. Vuong, M. Simon, F. Breher, A.V. Kucherov, A. Brückner, J.D. Grunwaldt, The dynamic nature of Cu sites in Cu-SSZ-13 and the origin of the seagull NOx conversion profile during NH3-SCR, React. Chem. Eng. 4(6) (2019) 1000–1018. [10] H. Shang, Y.P. Li, J.Q. Liu, X. Tang, J.F. Yang, J.P. Li, CH4/N2 separation on methane molecules grade diameter channel molecular sieves with a CHA-type structure, Chin. J. Chem. Eng. 27(5) (2019) 1044–1049. [11] E. Borfecchia, K.A. Lomachenko, F. Giordanino, H. Falsig, P. Beato, A.V. Soldatov, S. Bordiga, C. Lamberti, Revisiting the nature of Cu sites in the activated CuSSZ-13 catalyst for SCR reaction, Chem. Sci. 6(1) (2015) 548–563. [12] J. Hun Kwak, H.Y. Zhu, J.H. Lee, C.H. Peden, J. Szanyi, Two different cationic positions in Cu-SSZ-13? Chem. Commun. (Camb.) 48(39) (2012) 4758–4760. [13] U. Deka, A. Juhin, E.A. Eilertsen, H. Emerich, M.A. Green, S.T. Korhonen, B.M. Weckhuysen, A.M. Beale, Confirmation of isolated Cu2+ ions in SSZ-13 zeolite as active sites in NH3-selective catalytic reduction, J. Phys. Chem. C 116(7) (2012) 4809–4818. [14] C. Paolucci, A.A. Parekh, I. Khurana, J.R. Di Iorio, H. Li, J.D. Albarracin Caballero, A.J. Shih, T. Anggara, W.N. Delgass, J.T. Miller, F.H. Ribeiro, R. Gounder, W.F. Schneider, Catalysis in a cage: Condition-dependent speciation and dynamics of exchanged Cu cations in SSZ-13 zeolites, J. Am. Chem. Soc. 138(18) (2016) 6028–6048. [15] A.M. Beale, I. Lezcano-Gonzalez, W.A. Slawinski, W.A. Slawinksi, D.S. Wragg, Correlation between Cu ion migration behaviour and deNOx activity in Cu-SSZ-13 for the standard NH3-SCR reaction, Chem. Commun. (Camb.) 52(36) (2016) 6170–6173. [16] H. Jiang, B. Guan, X.S. Peng, R. Zhan, H. Lin, Z. Huang, Influence of synthesis method on catalytic properties and hydrothermal stability of Cu/SSZ-13 for NH3-SCR reaction, Chem. Eng. J. 379(2020) 122358. [17] R. Martínez-Franco, M. Moliner, J.R. Thogersen, A. Corma, Efficient one-pot preparation of Cu-SSZ-13 materials using cooperative OSDAs for their catalytic application in the SCR of NOx, ChemCatChem 5(11) (2013) 3316–3323. [18] C. Fan, Z. Chen, L. Pang, S.J. Ming, X.F. Zhang, K.B. Albert, P. Liu, H.P. Chen, T. Li, The influence of Si/Al ratio on the catalytic property and hydrothermal stability of Cu-SSZ-13 catalysts for NH3-SCR, Appl. Catal. A: Gen. 550(2018) 256–265. [19] L.J. Sun, M. Yang, L. Cao, Y. Cao, S.T. Xu, D.L. Zhu, P. Tian, Z.M. Liu, Fabrication of Cu-CHA composites with enhanced NH3-SCR catalytic performances and hydrothermal stabilities, Microporous Mesoporous Mater. 309(2020) 110585. [20] L.M. Ren, L.F. Zhu, C.G. Yang, Y.M. Chen, Q. Sun, H.Y. Zhang, C.J. Li, F. Nawaz, X.J. Meng, F.S. Xiao, Designed copper-amine complex as an efficient template for one-pot synthesis of Cu-SSZ-13 zeolite with excellent activity for selective catalytic reduction of NOx by NH3, Chem. Commun. (Camb.) 47(35) (2011) 9789–9791. [21] Y.Y. Yue, B. Liu, P. Qin, N. Lv, T.H. Wang, X.T. Bi, H.B. Zhu, P. Yuan, Z.S. Bai, Q.Y. Cui, X.J. Bao, One-pot synthesis of FeCu-SSZ-13 zeolite with superior performance in selective catalytic reduction of NO by NH3 from natural aluminosilicates, Chem. Eng. J. 398(2020) 125515. [22] T. Zhang, H. Chang, Y. You, C. Shi, J. Li, Excellent activity and selectivity of onepot synthesized Cu-SSZ-13 catalyst in the selective catalytic oxidation of ammonia to nitrogen, Environ. Sci. Technol. 52(8) (2018) 4802–4808. [23] T. Zhang, F. Qiu, H.Z. Chang, X. Li, J.H. Li, Identification of active sites and reaction mechanism on low-temperature SCR activity over Cu-SSZ-13 catalysts prepared by different methods, Catal. Sci. Technol. 6(16) (2016) 6294–6304. [24] J. Fan, P. Ning, Y.C. Wang, Z.X. Song, X. Liu, H.M. Wang, J. Wang, L.Y. Wang, Q.L. Zhang, Significant promoting effect of Ce or La on the hydrothermal stability of Cu-SAPO-34 catalyst for NH3-SCR reaction, Chem. Eng. J. 369(2019) 908–919. [25] F. Gao, J. Szanyi, On the hydrothermal stability of Cu/SSZ-13 SCR catalysts, Appl. Catal. A: Gen. 560(2018) 185–194. [26] C. Fan, Z. Chen, L. Pang, S.J. Ming, C.Y. Dong, K. Brou Albert, P. Liu, J.Y. Wang, D.J. Zhu, H.P. Chen, T. Li, Steam and alkali resistant Cu-SSZ-13 catalyst for the selective catalytic reduction of NOx in diesel exhaust, Chem. Eng. J. 334(2018) 344–354. [27] J. Ma, Y. Li, J. Liu, Z. Zhao, C. Xu, Y. Wei, W. Song, Y. Sun, X. Zhang, Cu-SAPO-18 for NH3-SCR Reaction: The effect of different aging temperatures on Cu2+ active sites and catalytic performances, Ind. Eng. Chem. Res. 58(2019) 2389–2395. [28] L.N. Han, X.G. Zhao, H.F. Yu, Y.F. Hu, D.B. Li, D.K. Sun, M.M. Liu, L.P. Chang, W.R. Bao, J.C. Wang, Preparation of SSZ-13 zeolites and their NH3-selective catalytic reduction activity, Microporous Mesoporous Mater. 261(2018) 126–136. [29] J. Song, Y.L. Wang, E.D. Walter, N.M. Washton, D. Mei, L. Kovarik, M.H. Engelhard, S. Prodinger, Y. Wang, C.H.F. Peden, F. Gao, Toward rational design of Cu/SSZ-13 selective catalytic reduction catalysts: Implications from atomiclevel understanding of hydrothermal stability, ACS Catal. 7(12) (2017) 8214–8227. [30] L.J. Xie, F.D. Liu, L.M. Ren, X.Y. Shi, F.S. Xiao, H. He, Excellent performance of one-pot synthesized Cu-SSZ-13 catalyst for the selective catalytic reduction of NOx with NH3, Environ. Sci. Technol. 48(1) (2014) 566–572. [31] F. Gao, N.M. Washton, Y.L. Wang, M. Kollár, J. Szanyi, C.H.F. Peden, Effects of Si/Al ratio on Cu/SSZ-13 NH3-SCR catalysts: Implications for the active Cu species and the roles of Brønsted acidity, J. Catal. 331(2015) 25–38. [32] H. Jiang, B. Guan, H. Lin, Z. Huang, Cu/SSZ-13 zeolites prepared by in situ hydrothermal synthesis method as NH3-SCR catalysts: Influence of the Si/Al ratio on the activity and hydrothermal properties, Fuel 255(2019) 115587. [33] Z.C. Zhao, R. Yu, R.R. Zhao, C. Shi, H. Gies, F.S. Xiao, D. De Vos, T. Yokoi, X.H. Bao, U. Kolb, M. Feyen, R. McGuire, S. Maurer, A. Moini, U. Müller, W.P. Zhang, Cuexchanged Al-rich SSZ-13 zeolite from organotemplate-free synthesis as NH3-SCR catalyst: Effects of Na+ ions on the activity and hydrothermal stability, Appl. Catal. B: Environ. 217(2017) 421–428. [34] L.J. Xie, F.D. Liu, X.Y. Shi, F.S. Xiao, H. He, Effects of post-treatment method and Na co-cation on the hydrothermal stability of Cu-SSZ-13 catalyst for the selective catalytic reduction of NOx with NH3, Appl. Catal. B: Environ. 179(2015) 206–212. [35] J.W. Chen, R. Zhao, R.X. Zhou, A new insight into active Cu2+ species properties in one-pot synthesized Cu-SSZ-13 catalysts for NOx reduction by NH3, ChemCatChem 10(22) (2018) 5182–5189, https://doi.org/10.1002/cctc.201801234. [36] B.H. Chen, R.N. Xu, R.D. Zhang, N. Liu, Economical way to synthesize SSZ-13 with abundant ion-exchanged Cu+ for an extraordinary performance in selective catalytic reduction (SCR) of NOx by ammonia, Environ. Sci. Technol. 48(23) (2014) 13909–13916. [37] H. Wang, R.N. Xu, Y. Jin, R.D. Zhang, Zeolite structure effects on Cu active center, SCR performance and stability of Cu-zeolite catalysts, Catal. Today 327(2019) 295–307. [38] A.K.S. Clemens, A. Shishkin, P.A. Carlsson, M. Skoglundh, F.J. Martínez-Casado, Z. Mat?j, O. Balmes, H. Härelind, Reaction-driven ion exchange of copper into zeolite SSZ-13, ACS Catal. 5(10) (2015) 6209–6218. [39] L. Ma, Y.S. Cheng, G. Cavataio, R.W. McCabe, L.X. Fu, J.H. Li, Characterization of commercial Cu-SSZ-13 and Cu-SAPO-34 catalysts with hydrothermal treatment for NH3-SCR of NOx in diesel exhaust, Chem. Eng. J. 225(2013) 323–330. [40] K.P. Xie, J. Woo, D. Bernin, A. Kumar, K. Kamasamudram, L. Olsson, Insights into hydrothermal aging of phosphorus-poisoned Cu-SSZ-13 for NH3-SCR, Appl. Catal. B: Environ. 241(2019) 205–216. [41] Z. Chen, C. Fan, L. Pang, S.J. Ming, P. Liu, D.J. Zhu, J.Y. Wang, X. Cai, H.P. Chen, Y. H. Lai, T. Li, Direct synthesis of submicron Cu-SAPO-34 as highly efficient and robust catalyst for selective catalytic reduction of NO by NH3, Appl. Surf. Sci. 448(2018) 671–680. [42] Y.L. Shan, X.Y. Shi, J.P. Du, Z.D. Yan, Y.B. Yu, H. He, SSZ-13 synthesized by solvent-free method: A potential candidate for NH3-SCR catalyst with high activity and hydrothermal stability, Ind. Eng. Chem. Res. 58(14) (2019) 5397–5403. [43] Z. Chen, C. Fan, L. Pang, S.J. Ming, P. Liu, T. Li, The influence of phosphorus on the catalytic properties, durability, sulfur resistance and kinetics of Cu-SSZ-13 for NO x reduction by NH3-SCR, Appl. Catal. B: Environ. 237(2018) 116–127. [44] Y.J. Kim, J.K. Lee, K.M. Min, S.B. Hong, I.S. Nam, B.K. Cho, Hydrothermal stability of CuSSZ13 for reducing NOx by NH3, J. Catal. 311(2014) 447–457. [45] F. Gao, E.D. Walter, M. Kollar, Y.L. Wang, J. Szanyi, C.H.F. Peden, Understanding ammonia selective catalytic reduction kinetics over Cu/SSZ-13 from motion of the Cu ions, J. Catal. 319(2014) 1–14. [46] Y. Zhang, Y. Peng, K. Li, S. Liu, J. Chen, J. Li, F. Gao, C.H.F. Peden, Using transient FTIR spectroscopy to probe active sites and reaction intermediates for selective catalytic reduction of NO on Cu/SSZ-13 Catalysts, ACS Catal. 9(2019) 6137–6145. [47] R. Yu, Z.C. Zhao, S.J. Huang, W.P. Zhang, Cu-SSZ-13 zeolite-metal oxide hybrid catalysts with enhanced SO2-tolerance in the NH3-SCR of NOx, Appl. Catal. B: Environ. 269(2020) 118825. [48] L.P. Han, S.X. Cai, M. Gao, J.Y. Hasegawa, P.L. Wang, J.P. Zhang, L.Y. Shi, D.S. Zhang, Selective catalytic reduction of NOx with NH3 by using novel catalysts: State of the art and future prospects, Chem. Rev. 119(19) (2019) 10916–10976. [49] Y. Qiu, C. Fan, C.C. Sun, H.C. Zhu, W.T. Yi, J.Z. Chen, L.Y. Guo, X.X. Niu, J.J. Chen, Y. Peng, T. Zhang, J.H. Li, New insight into the in situ SO2 poisoning mechanism over Cu-SSZ-13 for the selective catalytic reduction of NOx with NH3, Catalysts 10(12) (2020) 1391. [50] P.K. Dutta, D.C. Shieh, M. Puri, Correlation of framework Raman bands of zeolites with structure, Zeolites 8(4) (1988) 306–309. [51] Q. Guo, F.T. Fan, D.A.J.M. Ligthart, G.N. Li, Z.C. Feng, E.J.M. Hensen, C. Li, Effect of the nature and location of copper species on the catalytic nitric oxide selective catalytic reduction performance of the copper/SSZ-13 zeolite, ChemCatChem 6(2) (2014) 634–639. [52] Z.C. Zhao, R. Yu, C. Shi, H. Gies, F.S. Xiao, D. de Vos, T. Yokoi, X.H. Bao, U. Kolb, R. McGuire, A.N. Parvulescu, S. Maurer, U. Müller, W.P. Zhang, Rare-earth ion exchanged Cu-SSZ-13 zeolite from organotemplate-free synthesis with enhanced hydrothermal stability in NH3-SCR of NOx, Catal. Sci. Technol. 9(1) (2019) 241–251. [53] H.W. Zhao, Y.N. Zhao, M.K. Liu, X.H. Li, Y.H. Ma, X. Yong, H. Chen, Y.D. Li, Phosphorus modification to improve the hydrothermal stability of a Cu-SSZ-13 catalyst for selective reduction of NOx with NH3, Appl. Catal. B: Environ. 252(2019) 230–239. [54] J. Janas, J. Gurgul, R.P. Socha, S. Dzwigaj, Effect of Cu content on the catalytic activity of CuSiBEA zeolite in the SCR of NO by ethanol: Nature of the copper species, Appl. Catal. B: Environ. 91(1–2) (2009) 217–224. [55] L. Chen, T.V.W. Janssens, M. Skoglundh, H. Grönbeck, Interpretation of NH3-TPD profiles from Cu-CHA using first-principles calculations, Top. Catal. 62(1–4) (2019) 93–99. [56] J.Y. Luo, F. Gao, K. Kamasamudram, N. Currier, C.H.F. Peden, A. Yezerets, New insights into Cu/SSZ-13 SCR catalyst acidity. Part I: Nature of acidic sites probed by NH3 titration, J. Catal. 348(2017) 291–299. [57] L.L. Wang, X.Q. Wang, J.H. Cheng, P. Ning, Y.L. Lin, Coupling catalytic hydrolysis and oxidation on Mn/TiO2-Al2O3 for HCN removal, Appl. Surf. Sci. 439(2018) 213–221. [58] Z. Chen, C. Fan, L. Pang, S.J. Ming, W. Guo, P. Liu, H.P. Chen, T. Li, One-pot synthesis of high performance Cu-SAPO-18 catalyst for NO reduction by NH3-SCR: Influence of silicon content on the catalytic properties of Cu-SAPO-18, Chem. Eng. J. 348(2018) 608–617. |