Chinese Journal of Chemical Engineering ›› 2022, Vol. 41 ›› Issue (1): 420-429.DOI: 10.1016/j.cjche.2021.10.004
• Catalysis, Kinetics and Reaction Engineering • Previous Articles Next Articles
Chun Pei, Shangjun Chen, Rongrong Song, Fei Lv, Ying Wan
Received:
2021-06-12
Revised:
2021-09-11
Online:
2022-02-25
Published:
2022-01-28
Contact:
Shangjun Chen,E-mail address:jshchen@shnu.edu.cn;Ying Wan,E-mail address:ywan@shnu.edu.cn
Supported by:
Chun Pei, Shangjun Chen, Rongrong Song, Fei Lv, Ying Wan
通讯作者:
Shangjun Chen,E-mail address:jshchen@shnu.edu.cn;Ying Wan,E-mail address:ywan@shnu.edu.cn
基金资助:
Chun Pei, Shangjun Chen, Rongrong Song, Fei Lv, Ying Wan. The self-assembly of gold nanoparticles in large-pore ordered mesoporous carbons[J]. Chinese Journal of Chemical Engineering, 2022, 41(1): 420-429.
Chun Pei, Shangjun Chen, Rongrong Song, Fei Lv, Ying Wan. The self-assembly of gold nanoparticles in large-pore ordered mesoporous carbons[J]. 中国化学工程学报, 2022, 41(1): 420-429.
[1] L.L. Zhang, M.X. Zhou, A.Q. Wang, T. Zhang, Selective hydrogenation over supported metal catalysts: from nanoparticles to single atoms, Chem. Rev. 120(2) (2020) 683–733. [2] Q.F. Wu, B. Zhang, C. Zhang, X.C. Meng, X. Su, S. Jiang, R.H. Shi, Y. Li, W.W. Lin, M. Arai, H.Y. Cheng, F.Y. Zhao, Significance of surface oxygen-containing groups and heteroatom P species in switching the selectivity of Pt/C catalyst in hydrogenation of 3-nitrostyrene, J. Catal. 364(2018) 297–307. [3] P. Serna, A. Corma, Transforming nano metal nonselective particulates into chemoselective catalysts for hydrogenation of substituted nitrobenzenes, ACS Catal. 5(12) (2015) 7114–7121. [4] T. Ishida, T. Murayama, A. Taketoshi, M. Haruta, Importance of size and contact structure of gold nanoparticles for the genesis of unique catalytic processes, Chem. Rev. 120(2) (2020) 464–525. [5] J. Su, J.S. Chen, Synthetic porous materials applied in hydrogenation reactions, Micropor. Mesopor. Mater. 237(2017) 246–259. [6] Q.N. Wang, L. Shi, A.H. Lu, Cover picture: highly selective copper catalyst supported on mesoporous carbon for the dehydrogenation of ethanol to acetaldehyde (ChemCatChem 18/2015), ChemCatChem 7(18) (2015) 2721. [7] M. Sankar, Q. He, R.V. Engel, M.A. Sainna, A.J. Logsdail, A. Roldan, D.J. Willock, N. Agarwal, C.J. Kiely, G.J. Hutchings, Role of the support in gold-containing nanoparticles as heterogeneous catalysts, Chem. Rev. 120(8) (2020) 3890–3938. [8] R. Biriaei, B. Nohair, S. Kaliaguine, A facile route to synthesize mesoporous ZSM-5 with hexagonal arrays using P123 triblock copolymer, Micropor. Mesopor. Mater. 298(2020) 110067. [9] Z.H. Zhang, X. Zhao, G. Wang, J.L. Xu, M.K. Lu, Y.Q. Tang, W.Z. Fu, X.Z. Duan, G. Qian, D. Chen, X.G. Zhou, Uncalcined TS-2 immobilized Au nanoparticles as a bifunctional catalyst to boost direct propylene epoxidation with H2 and O2, AIChE J. 66(2) (2020) 16815. [10] Y.Y. Cui, B. Wang, C. Wen, X. Chen, W.L. Dai, Investigation of activated-carbonsupported copper catalysts with unique catalytic performance in the hydrogenation of dimethyl oxalate to methyl glycolate, ChemCatChem 8(3) (2016) 527–531. [11] R. Rinaldi, F. Schüth, Design of solid catalysts for the conversion of biomass, Energy Environ. Sci. 2(6) (2009) 610. [12] M. Liu, P. Mostaghimi, Reactive transport modelling in dual porosity media, Chem. Eng. Sci. 190(2018) 436–442. [13] L. Peng, C.T. Hung, S.W. Wang, X.M. Zhang, X.H. Zhu, Z.W. Zhao, C.Y. Wang, Y. Tang, W. Li, D.Y. Zhao, Versatile nanoemulsion assembly approach to synthesize functional mesoporous carbon nanospheres with tunable pore sizes and architectures, J. Am. Chem. Soc. 141(17) (2019) 7073–7080. [14] B. Zhang, B. Chen, M. Douthwaite, Q. Liu, C. Zhang, Q.F. Wu, R.H. Shi, P.X. Wu, F. Y. Zhao, G. Hutchings, Macroporous–mesoporous carbon supported Ni catalysts for the conversion of cellulose to polyols, Green Chem. 20(15) (2018) 3634–3642. [15] M.R. Benzigar, S.N. Talapaneni, S. Joseph, K. Ramadass, G. Singh, J. Scaranto, U. Ravon, K. Al-Bahily, A. Vinu, Recent advances in functionalized micro and mesoporous carbon materials: synthesis and applications, Chem. Soc. Rev. 47(8) (2018) 2680–2721. [16] L.C. Liu, A. Corma, Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles, Chem. Rev. 118(10) (2018) 4981–5079. [17] T. Ishida, H. Koga, M. Okumura, M. Haruta, Advances in gold catalysis and understanding the catalytic mechanism, Chem. Rec. 16(5) (2016) 2278–2293. [18] J. Sá, A. Goguet, S.F. Taylor, R. Tiruvalam, C.J. Kiely, M. Nachtegaal, G.J. Hutchings, C. Hardacre, Influence of methyl halide treatment on gold nanoparticles supported on activated carbon, Angew. Chem. Int. Ed. Engl. 50(38) (2011) 8912–8916. [19] R. Radhakrishnan, S. Thiripuranthagan, A. Devarajan, S. Kumaravel, E. Erusappan, K. Kannan, Oxidative esterification of furfural by Au nanoparticles supported CMK-3 mesoporous catalysts, Appl. Catal. A: Gen. 545(2017) 33–43. [20] P.R. Murthy, P. Selvam, The enhanced catalytic performance and stability of ordered mesoporous carbon supported nano-gold with high structural integrity for glycerol oxidation, Chem. Rec. 19(9) (2019) 1913–1925. [21] R.Y. Zhong, X.H. Yan, Z.K. Gao, R.J. Zhang, B.Q. Xu, Stabilizer substitution and its effect on the hydrogenation catalysis by Au nanoparticles from colloidal synthesis, Catal. Sci. Technol. 3(11) (2013) 3013. [22] B. Donoeva, P.E. De Jongh, Cover feature: colloidal Au catalyst preparation: selective removal of polyvinylpyrrolidone from active Au sites (ChemCatChem 5/2018), ChemCatChem 10(5) (2018) 860. [23] X.J. Zhu, Q.S. Guo, Y.F. Sun, S.J. Chen, J.Q. Wang, M.M. Wu, W.Z. Fu, Y.Q. Tang, X. Z. Duan, D. Chen, Y. Wan, Optimising surface d charge of AuPd nanoalloy catalysts for enhanced catalytic activity, Nat. Commun. 10(1) (2019) 1428. [24] W.J. Shen, Experimentally measurable surface d charge as a descriptor for catalytic activity, Acta Phys.-Chimica Sin. 35(11) (2019) 1173–1174. [25] Y. Sun, Y. Cao, L. Wang, X. Mu, Q. Zhao, R. Si, X. Zhu, S. Chen, B. Zhang, W.Y. Chen, Gold catalysts containing interstitial carbon atoms boost hydrogenation activity, Nat. Commun. 11(1) (2020) 4600. [26] S.C. Warren, L.C. Messina, L.S. Slaughter, M. Kamperman, Q. Zhou, S.M. Gruner, F.J. DiSalvo, U. Wiesner, Ordered mesoporous materials from metal nanoparticle-block copolymer self-assembly, Science 320(5884) (2008) 1748–1752. [27] M.C. Orilall, F. Matsumoto, Q. Zhou, H. Sai, H.D. Abruña, F.J. DiSalvo, U. Wiesner, One-pot synthesis of platinum-based nanoparticles incorporated into mesoporous niobium oxide-carbon composites for fuel cell electrodes, J. Am. Chem. Soc. 131(26) (2009) 9389–9395. [28] J. Shim, J. Lee, Y. Ye, J. Hwang, S.K. Kim, T.H. Lim, U. Wiesner, J. Lee, One-pot synthesis of intermetallic electrocatalysts in ordered, large-pore mesoporous carbon/silica toward formic acid oxidation, ACS Nano 6(8) (2012) 6870–6881. [29] H. Li, H. Shen, C. Pei, S.J. Chen, Y. Wan, A self-assembly process for the immobilization of N-modified Au nanoparticles in ordered mesoporous carbon with large pores, ChemCatChem 11(16) (2019) 3882–3891. [30] K. Matyjaszewski, Atom transfer radical polymerization (ATRP): current status and future perspectives, Macromolecules 45(10) (2012) 4015–4039. [31] S. Wang, J. Wang, Q.F. Zhao, D.D. Li, J.Q. Wang, M. Cho, H. Cho, O. Terasaki, S.J. Chen, Y. Wan, Highly active heterogeneous 3 nm gold nanoparticles on mesoporous carbon as catalysts for low-temperature selective oxidation and reduction in water, ACS Catal. 5(2) (2015) 797–802. [32] H.B. Fu, L. Zhang, Y. Wang, S.J. Chen, Y. Wan, Thermally reduced gold nanocatalysts prepared by the carbonization of ordered mesoporous carbon as a heterogeneous catalyst for the selective reduction of aromatic nitro compounds, J. Catal. 344(2016) 313–324. [33] C. Della Pina, E. Falletta, M. Rossi, A. Sacco, Selective deactivation of gold catalyst, J. Catal. 263(1) (2009) 92–97. [34] J.Y. Zhang, Y.H. Deng, J. Wei, Z.K. Sun, D. Gu, H. Bongard, C. Liu, H.H. Wu, B. Tu, F. Schüth, D.Y. Zhao, Design of amphiphilic ABC triblock copolymer for templating synthesis of large-pore ordered mesoporous carbons with tunable pore wall thickness, Chem. Mater. 21(17) (2009) 3996–4005. [35] A.S. Manchanda, M. Kruk, Synthesis of large-pore face-centered-cubic periodic mesoporous organosilicas with unsaturated bridging groups, Micropor. Mesopor. Mater. 222(2016) 153–159. [36] X. Yan, X. Wang, Y. Tang, G. Ma, S. Zou, R. Li, X. Peng, S. Dai, J. Fan, Ordered, extra-large mesopores with highly loaded gold nanoparticles: a new sinteringand coking-resistant catalyst system, Chem. Commun. (Camb.) 49(66) (2013) 7274–7276. [37] L. Prati, A. Villa, Gold catalysis: preparation, characterization, and applications, CRC Press, Boca Raton, 2016. [38] S. Wang, Q. Zhao, H. Wei, J.Q. Wang, M. Cho, H.S. Cho, O. Terasaki, Y. Wan, Aggregation-free gold nanoparticles in ordered mesoporous carbons: toward highly active and stable heterogeneous catalysts, J. Am. Chem. Soc. 135(32) (2013) 11849–11860. [39] L. Su, F.Z. Zhang, L.J. Wang, X.S. Fang, W. Jiang, J.P. Yang, Flexible electrocatalysts: interfacial-assembly of iron nanoparticles for nitrate reduction, Chem. Commun. 57(55) (2021) 6740–6743. [40] G.J. Zhu, R. Guo, W. Luo, H.K. Liu, W. Jiang, S.X. Dou, J.P. Yang, Boron dopinginduced interconnected assembly approach for mesoporous silicon oxycarbide architecture, Natl. Sci. Rev. 8(6) (2021) nwaa152. [41] H. Xu, J. Wu, W. Luo, Q. Li, W.X. Zhang, J.P. Yang, Dendritic cell-inspired designed architectures toward highly efficient electrocatalysts for nitrate reduction reaction, Small 16(30) (2020) e2001775. [42] Y.D. Zou, X.R. Zhou, J.H. Ma, X. Yang, Y.H. Deng, Recent advances in amphiphilic block copolymer templated mesoporous metal-based materials: assembly engineering and applications, Chem. Soc. Rev. 49(4) (2020) 1173–1208. [43] W.C. Zhan, Q. He, X.F. Liu, Y.L. Guo, Y.Q. Wang, L. Wang, Y. Guo, A.Y. Borisevich, J.S. Zhang, G.Z. Lu, S. Dai, A sacrificial coating strategy toward enhancement of metal-support interaction for ultrastable Au nanocatalysts, J. Am. Chem. Soc. 138(49) (2016) 16130–16139. [44] Z.Z. Jiang, Z.B. Wang, D.M. Gu, E.S. Smotkin, Carbon riveted Pt/C catalyst with high stability prepared by in situ carbonized glucose, Chem. Commun. (Camb.) 46(37) (2010) 6998–7000. [45] S. Fountoulaki, V. Daikopoulou, P.L. Gkizis, I. Tamiolakis, G.S. Armatas, I.N. Lykakis, Mechanistic studies of the reduction of nitroarenes by NaBH4 or hydrosilanes catalyzed by supported gold nanoparticles, ACS Catal. 4(10) (2014) 3504–3511. [46] X.R. Zhao, Y.Q. Cao, L.L. Duan, R.O. Yang, Z. Jiang, C. Tian, S.J. Chen, X.Z. Duan, D. Chen, Y. Wan, Unleash electron transfer in C-H functionalization by mesoporous carbon-supported palladium interstitial catalysts, Natl. Sci. Rev. 8(4) (2021) nwaa126. [47] M.A. Isaacs, N. Robinson, B. Barbero, L.J. Durndell, J.C. Manayil, C.M.A. Parlett, C. D’Agostino, K. Wilson, A.F. Lee, Unravelling mass transport in hierarchically porous catalysts, J. Mater. Chem. A 7(19) (2019) 11814–11825. [48] S.J. Chen, H.B. Fu, L. Zhang, Y. Wan, Nanospherical mesoporous carbonsupported gold as an efficient heterogeneous catalyst in the elimination of mass transport limitations, Appl. Catal. B: Environ. 248(2019) 22–30. |
[1] | Junyu Chen, Yu Yang, Yuzheng Pan, Yang You, Liwen Hu, Meilong Hu. Wear resistance performance of high entropy alloy–ceramic coating composites synthesized via a novel combined process [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 202-213. |
[2] | Jixiang Liu, Xin Zhou, Gengfei Yang, Hui Zhao, Zhibo Zhang, Xiang Feng, Hao Yan, Yibin Liu, Xiaobo Chen, Chaohe Yang. Conceptual carbon-reduction process design and quantitative sustainable assessment for concentrating high purity ethylene from wasted refinery gas [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 290-308. |
[3] | Yuhan Zhu, Jia Wei, Jun Li. Decontamination of Cr(VI) from water using sewage sludge-derived biochar: Role of environmentally persistent free radicals [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 97-103. |
[4] | Shuang Qiu, Yonghou Xiao, Haoran Wu, Shengnan Lu, Qidong Zhao, Gaohong He. One-pot synthesis of bimetallic CeCu-SAPO-34 for high-efficiency selective catalytic reduction of nitrogen oxides with NH3 at low temperature [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 193-202. |
[5] | Xiaoping Li, Jiaxin Pan, Jinwen Shi, Yanlin Chai, Songwei Hu, Qiaorong Han, Yanming Zhang, Xianwen Li, Dengwei Jing. Nanoparticle-induced drag reduction for polyacrylamide in turbulent flow with high Reynolds numbers [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 290-298. |
[6] | Mingdong Sun, Dongxin Pan, Tingting Ye, Jing Gu, Yu Zhou, Jun Wang. Ionic porous polyamide derived N-doped carbon towards highly selective electroreduction of CO2 [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 212-221. |
[7] | Yaoyao Peng, Lei Song, Siru Lu, Ziyu Su, Kui Ma, Siyang Tang, Shan Zhong, Hairong Yue, Bin Liang. Superior resistance to alkali metal potassium of vanadium-based NH3-SCR catalyst promoted by the solid superacid SO42--TiO2 [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 246-256. |
[8] | Libing Yu, Qiuyan Huang, Jing Wu, Erhong Song, Beibei Xiao. Spatial-five coordination promotes the high efficiency of CoN4 moiety in graphene-based bilayer for oxygen reduction electrocatalysis: A density functional theory study [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 106-113. |
[9] | Wenjuan Yan, Puhua Sun, Chen Luo, Xingfan Xia, Zhifei Liu, Yuming Zhao, Shuxia Zhang, Liang Sun, Feng Du. PtCo-based nanocatalyst for oxygen reduction reaction: Recent highlights on synthesis strategy and catalytic mechanism [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 101-123. |
[10] | Shanshan Xu, Qilei Zhang, Dongmei Bai, Linian Cai, Tao Lu, Shanjing Yao. Removal process and mechanism of hexavalent chromium by adsorption-coupled reduction with marine-derived Aspergillus niger mycelial pellets [J]. Chinese Journal of Chemical Engineering, 2022, 49(9): 198-204. |
[11] | Wei Hong, Xinran Shen, Jian Wang, Xin Feng, Wenjing Zhang, Jing Li, Zidong Wei. High-loading Pt-alloy catalysts for boosted oxygen reduction reaction performance [J]. Chinese Journal of Chemical Engineering, 2022, 48(8): 30-35. |
[12] | Xinyu Lu, Dandan Wang, Haoquan Guo, Pengcheng Xiu, Jiajia Chen, Yu Qin, Hossain Mahmud Robin, Chaozhong Xu, Xingguang Zhang, Xiaoli Gu. Insights into depolymerization pathways and mechanism of alkali lignin over a Ni1.2–ZrO2/WO3/γ-Al2O3 catalyst [J]. Chinese Journal of Chemical Engineering, 2022, 48(8): 191-201. |
[13] | Yu Zhang, Ling Zhao, Ziang Chen, Xinyong Li. Promotional effect for SCR of NO with CO over MnOx-doped Fe3O4 nanoparticles derived from metal-organic frameworks [J]. Chinese Journal of Chemical Engineering, 2022, 46(6): 113-125. |
[14] | Yaqi Ren, Shuqian Xia. Synthesis and mechanism analysis of a new oil soluble viscosity reducer for flow improvement of Chenping heavy oil [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 58-67. |
[15] | Huawang Zhao, Xiaomin Wu, Zhiwei Huang, Ziyi Chen, Guohua Jing. A comparative study of the thermal and hydrothermal aging effect on Cu-SSZ-13 for the selective catalytic reduction of NOx with NH3 [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 68-77. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 87
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 161
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||