[1] A.J. Sathrum, C.P. Kubiak, Kinetics and limiting current densities of homogeneous and heterogeneous electrocatalysts, J. Phys. Chem. Lett. 2(18) (2011) 2372-2379. [2] C. Costentin, G. Passard, J.M. Savéant, Benchmarking of homogeneous electrocatalysts:overpotential, turnover frequency, limiting turnover number, J. Am. Chem. Soc. 137(16) (2015) 5461-5467. [3] C. Costentin, J.M. Savéant, Homogeneous molecular catalysis of electrochemical reactions:catalyst benchmarking and optimization strategies, J. Am. Chem. Soc. 139(24) (2017) 8245-8250. [4] D.C. Hong, Y. Tsukakoshi, H. Kotani, T. Ishizuka, K. Ohkubo, Y. Shiota, K. Yoshizawa, S. Fukuzumi, T. Kojima, Mechanistic insights into homogeneous electrocatalytic and photocatalytic hydrogen evolution catalyzed by high-spin Ni(II) complexes with S2N2-type tetradentate ligands, Inorg. Chem. 57(12) (2018) 7180-7190. [5] H. Noh, C.W. Kung, K.I. Otake, A.W. Peters, Z.Y. Li, Y.J. Liao, X.Y. Gong, O.K. Farha, J.T. Hupp, Redox-mediator-assisted electrocatalytic hydrogen evolution from water by a molybdenum sulfide-functionalized metal-organic framework, ACS Catal. 8(10) (2018) 9848-9858. [6] E.S. Wiedner, H.J. Brown, M.L. Helm, Kinetic analysis of competitive electrocatalytic pathways:new insights into hydrogen production with nickel electrocatalysts, J. Am. Chem. Soc. 138(2) (2016) 604-616. [7] L.T. Hu, T.Y. Zhai, H.Q. Li, Y.G. Wang, Redox-mediator-enhanced electrochemical capacitors:recent advances and future perspectives, ChemSusChem 12(6) (2019) 1118-1132. [8] D. Lee, H. Park, Y. Ko, H. Park, T. Hyeon, K. Kang, J. Park, Direct observation of redox mediator-assisted solution-phase discharging of Li-O2 battery by liquidphase transmission electron microscopy, J. Am. Chem. Soc. 141(20) (2019) 8047-8052. [9] Z.Y. Guo, C. Li, J.Y. Liu, Y.G. Wang, Y.Y. Xia, A long-life lithium-air battery in ambient air with a polymer electrolyte containing a redox mediator, Angew. Chem. Int. Ed. Engl. 56(26) (2017) 7505-7509. [10] W.T. Huang, J.F. Chen, Y.Y. Hu, J. Chen, J. Sun, L.H. Zhang, Enhanced simultaneous decolorization of azo dye and electricity generation in microbial fuel cell (MFC) with redox mediator modified anode, Int. J. Hydrog. Energy 42(4) (2017) 2349-2359. [11] M.L. Pegis, C.F. Wise, D.J. Martin, J.M. Mayer, Oxygen reduction by homogeneous molecular catalysts and electrocatalysts, Chem. Rev. 118(5) (2018) 2340-2391. [12] M.L. Pegis, B.A. McKeown, N. Kumar, K. Lang, D.J. Wasylenko, X.P. Zhang, S. Raugei, J.M. Mayer, Homogenous electrocatalytic oxygen reduction rates correlate with reaction overpotential in acidic organic solutions, ACS Cent. Sci. 2(11) (2016) 850-856. [13] S. Gentil, D. Reynard, H.H. Girault, Aqueous organic and redox-mediated redox flow batteries:a review, Curr. Opin. Electrochem. 21(2020) 7-13. [14] E. Zanzola, C.R. Dennison, A. Battistel, P. Peljo, H. Vrubel, V. Amstutz, H.H. Girault, Redox solid energy boosters for flow batteries:polyaniline as a case study, Electrochim. Acta 235(2017) 664-671. [15] R. Francke, R.D. Little, Redox catalysis in organic electrosynthesis:basic principles and recent developments, Chem. Soc. Rev. 43(8) (2014) 2492-2521. [16] J.C. Siu, N.K. Fu, S. Lin, Catalyzing electrosynthesis:a homogeneous electrocatalytic approach to reaction discovery, Acc. Chem. Res. 53(3) (2020) 547-560. [17] C. Costentin, D.G. Nocera, C.N. Brodsky, Multielectron, multisubstrate molecular catalysis of electrochemical reactions:Formal kinetic analysis in the total catalysis regime, PNAS 114(43) (2017) 11303-11308. [18] N.S. Lawrence, G.J. Tustin, M. Faulkner, T.G.J. Jones, Ferrocene sulfonates as electrocatalysts for sulfide detection, Electrochim. Acta 52(2) (2006) 499-503. [19] K.J. Lee, C.T. Gruninger, K.M. Lodaya, S. Qadeer, B.E. Griffith, J.L. Dempsey, Analysis of multi-electron, multi-step homogeneous catalysis by rotating disc electrode voltammetry:theory, application, and obstacles, Analyst 145(4) (2020) 1258-1278. [20] M. Janeva, P. Kokoskarova, V. Maksimova, R. Gulaboski, Square-wave voltammetry of two-step surface electrode mechanisms coupled with chemical reactions-A theoretical overview, Electroanalysis 31(12) (2019) 2488-2506. [21] P. Kokoskarova, R. Gulaboski, Theoretical aspects of a surface electrode reaction coupled with preceding and regenerative chemical steps:squarewave voltammetry of a surface CEC' mechanism, Electroanalysis 32(2) (2020) 333-344. [22] P. Dauphin-Ducharme, N. Arroyo-Currás, M. Kurnik, G. Ortega, H. Li, K.W. Plaxco, Simulation-based approach to determining electron transfer rates using square-wave voltammetry, Langmuir 33(18) (2017) 4407-4413. [23] A.J. Bard, L.R. Faulkner, Electrochemical Methods:Fundamentals and Applications, second ed., John Wiley & Sons, New Jersey, 2001. [24] V. Mirceski, S. Komorsky-Lovric, M. Lovric, in:Square-Wave Voltammetry, Springer Berlin Heidelberg, Berlin, Heidelberg, 2007. [25] A.D. Robles, S.N. Vettorelo, M. Gerpe, F. Garay, The electrochemical reaction mechanism of arsenic on gold analyzed by anodic stripping Square-wave voltammetry, Electrochim. Acta 227(2017) 447-454. [26] J. Gómez Avila, A.C. Heredia, M.E. Crivello, F. Garay, Theory of square-wave voltammetry for the analysis of an EC reaction mechanism complicated by the adsorption of the reagent, J. Electroanal. Chem. 840(2019) 117-124. [27] D. Guziejewski, Electrode mechanisms with coupled chemical reaction-Amplitude effect in square-wave voltammetry, J. Electroanal. Chem. 870(2020) 114186. [28] I. Novak Jovanović, D. Jadreško, A. Miličević, M. Hranjec, N. Perin, An electrochemical study on the redox chemistry of cyclic benzimidazole derivatives with potent anticancer activity, Electrochim. Acta 297(2019) 452-462. [29] A.B. Miles, R.G. Compton, Simulation of square-wave voltammetry:EC and ECE electrode processes, J. Phys. Chem. B 104(22) (2000) 5331-5342. [30] S.N. Vettorelo, M. Cuéllar, P.I. Ortiz, F. Garay, Theory of square-wave voltammetry for the analysis of a CE reaction mechanism complicated by the adsorption of the reactant, J. Electroanal. Chem. 852(2019) 113519. [31] J.C. Helfrick Jr., M.A. Mann, L.A. Bottomley, Diagnostic criteria for the characterization of electrode reactions with chemically coupled reactions preceding the electron transfer by cyclic square wave voltammetry, ChemPhysChem 17(16) (2016) 2596-2606. [32] R. Gulaboski, V. Mirceski, New aspects of the electrochemical-catalytic (EC') mechanism in square-wave voltammetry, Electrochim. Acta 167(2015) 219-225. [33] R. Gulaboski, P. Kokoskarova, S. Risafova, Analysis of enzyme-substrate interactions from square-wave protein-film voltammetry of complex electrochemical-catalytic mechanism associated with reversible regenerative reaction, J. Electroanal. Chem. 868(2020) 114189. [34] V. Mirceski, D. Guziejewski, M. Bozem, I. Bogeski, Characterizing electrode reactions by multisampling the current in square-wave voltammetry, Electrochim. Acta 213(2016) 520-528. [35] J. González, C.M. Soto, A. Molina, Square Wave Voltammetry and Voltcoulometry applied to electrocatalytic reactions. Oxidation of ferrocyanide at a ferrocene modified gold electrode, J. Electroanal. Chem. 634(2) (2009) 90-97. [36] E.S. Rountree, B.D. McCarthy, T.T. Eisenhart, J.L. Dempsey, Evaluation of homogeneous electrocatalysts by cyclic voltammetry, Inorg. Chem. 53(19) (2014) 9983-10002. [37] S. Yin, P. Song, H. Wang, H.Y. Ma, Z. Wang, Y.M. Yu, An investigation of homogeneous electrocatalytic mechanism between ferrocene derivatives and l-cysteine/N-Acetyl-l-cysteine, Electrochim. Acta 346(2020) 136126. [38] P. Song, A.C. Fisher, J.D. Wadhawan, J.J. Cooper, H.J. Ward, N.S. Lawrence, A mechanistic study of the EC' mechanism-the split wave in cyclic voltammetry and square wave voltammetry, RSC Adv. 6(74) (2016) 70237-70242. [39] H. Shayani-Jam, D. Nematollahi, Electrochemically mediated oxidation of glutathione and N-acetylcysteine with 4, 4'-biphenol, Electrochim. Acta 56(25) (2011) 9311-9316. [40] A. Frkonja-Kuczin, J.Y. Alicea-Salas, N. Arroyo-Currás, A. Boika, Hot-SWV:square wave voltammetry with hot microelectrodes, Anal. Chem. 92(13) (2020) 8852-8858. [41] M. Darder, E. Casero, D.J. Díaz, H.D. Abruña, F. Pariente, E. Lorenzo, Concentration dependence of aggregate formation upon adsorption of 5-(octyldithio)-2-nitrobenzoic acid on gold electrodes, Langmuir 16(25) (2000) 9804-9811. [42] N.L. Ritzert, J. Rodríguez-López, C. Tan, H.D. Abruña, Kinetics of interfacial electron transfer at single-layer graphene electrodes in aqueous and nonaqueous solutions, Langmuir 29(5) (2013) 1683-1694. [43] C.P. Andrieux, C. Blocman, J.M. Dumas-Bouchiat, F. M'Halla, J.M. Savéant, Homogeneous redox catalysis of electrochemical reactions:Part V. Cyclic voltammetry, J. Electroanal. Chem. Interfacial Electrochem. 113(1) (1980) 19-40. [44] P. Song, S. Yin, Z. Wang, Insights into the design of homogeneous electrocatalytic flow sensor via a rotating disc electrode system, Mater. Des. 206(2021) 109763. [45] W.L. Davis, R.F. Shago, E.H.G. Langner, J.C. Swarts, Synthesis and electrochemical properties of a series of ferrocene-containing alcohols, Polyhedron 24(12) (2005) 1611-1616. |