Chinese Journal of Chemical Engineering ›› 2022, Vol. 42 ›› Issue (2): 297-311.DOI: 10.1016/j.cjche.2021.01.011
Previous Articles Next Articles
Tao Zheng1,2, Xiuyang Zou1, Meisheng Li1, Shouyong Zhou1, Yijiang Zhao1,2, Zhaoxiang Zhong2
Received:
2020-09-03
Revised:
2021-01-24
Online:
2022-03-30
Published:
2022-02-28
Contact:
Meisheng Li,E-mail:lms1108@hytc.edu.cn;Yijiang Zhao,E-mail:cyjzhao@126.com
Supported by:
Tao Zheng1,2, Xiuyang Zou1, Meisheng Li1, Shouyong Zhou1, Yijiang Zhao1,2, Zhaoxiang Zhong2
通讯作者:
Meisheng Li,E-mail:lms1108@hytc.edu.cn;Yijiang Zhao,E-mail:cyjzhao@126.com
基金资助:
Tao Zheng, Xiuyang Zou, Meisheng Li, Shouyong Zhou, Yijiang Zhao, Zhaoxiang Zhong. Two-dimensional graphitic carbon nitride for membrane separation[J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 297-311.
Tao Zheng, Xiuyang Zou, Meisheng Li, Shouyong Zhou, Yijiang Zhao, Zhaoxiang Zhong. Two-dimensional graphitic carbon nitride for membrane separation[J]. 中国化学工程学报, 2022, 42(2): 297-311.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2021.01.011
[1] K.K. Sirkar, Membrane separation technologies:Current developments, Chem. Eng. Commun. 157 (1) (1997) 145-184 [2] R.W. Baker, Research needs in the membrane separation industry:Looking back, looking forward, J. Membr. Sci. 362 (1-2) (2010) 134-136 [3] T.Y. Cath, A.E. Childress, M. Elimelech, Forward osmosis:Principles, applications, and recent developments, J. Membr. Sci. 281 (1-2) (2006) 70-87 [4] M.Y. De Zoysa, A.H. Chon, L.M. Korst, A. Llanes, R.H. Chmait, Membrane separation and perinatal outcomes after laser treatment for twin-twin transfusion syndrome, Fetal Diagn Ther 47 (4) (2020) 307-314 [5] Z. Feng, X.D. Chen, X.D. Wu, M.J. Zhang, Formation of biological condensates via phase separation:Characteristics, analytical methods, and physiological implications, J Biol Chem 294 (40) (2019) 14823-14835 [6] Y.Q. Yang, K. Goh, P. Weerachanchai, T.H. Bae, 3D covalent organic framework for morphologically induced high-performance membranes with strong resistance toward physical aging, J. Membr. Sci. 574 (2019) 235-242 [7] K.L. Wang, X.R. Liu, Y. Tan, W. Zhang, S.F. Zhang, J.Z. Li, Two-dimensional membrane and three-dimensional bulk aerogel materials via top-down wood nanotechnology for multibehavioral and reusable oil/water separation, Chem. Eng. J. 371 (2019) 769-780 [8] J.D. Shao, H.H. Xie, H.Y. Wang, W.H. Zhou, Q. Luo, X.F. Yu, P.K. Chu, 2D material-based nanofibrous membrane for photothermal cancer therapy, ACS Appl Mater Int.10 (1) (2018) 1155-1163 [9] W. Liu, D.J. Wang, R.A. Soomro, F. Fu, N. Qiao, Y. Yu, R. Wang, B. Xu, Ceramic supported attapulgite-graphene oxide composite membrane for efficient removal of heavy metal contamination, J. Membr. Sci. 591 (2019) 117323 [10] K. Varoon, X. Zhang, B. Elyassi, D.D. Brewer, M. Gettel, S. Kumar, J.A. Lee, S. Maheshwari, A. Mittal, C.Y. Sung, M. Cococcioni, L.F. Francis, A.V. McCormick, K.A. Mkhoyan, M. Tsapatsis, Dispersible exfoliated zeolite nanosheets and their application as a selective membrane, Science 334 (6052) (2011) 72-75 [11] V. Dincă, A. Mocanu, G. Isopencu, C. Busuioc, S. Brajnicov, A. Vlad, M. Icriverzi, A. Roseanu, M. Dinescu, M. Stroescu, A. Stoica-Guzun, M. Suchea, Biocompatible pure ZnO nanoparticles-3D bacterial cellulose biointerfaces with antibacterial properties, Arab. J. Chem. 13 (1) (2020) 3521-3533 [12] J. Yu, Y. Zhang, J.H. Chen, L.L. Cui, W.H. Jing, Solvothermal-induced assembly of 2D-2D rGO-TiO2 nanocomposite for the construction of nanochannel membrane, J. Membr. Sci. 600 (2020) 117870 [13] K.C. Guan, D. Zhao, M.C. Zhang, J. Shen, G.Y. Zhou, G.P. Liu, W.Q. Jin, 3D nanoporous crystals enabled 2D channels in graphene membrane with enhanced water purification performance, J. Membr. Sci. 542 (2017) 41-51 [14] K. Celebi, J. Buchheim, R.M. Wyss, A. Droudian, P. Gasser, I. Shorubalko, J.I. Kye, C. Lee, H.G. Park, Ultimate permeation across atomically thin porous graphene, Science 344 (6181) (2014) 289-292 [15] B. Min, S.W. Yang, A. Korde, Y.H. Kwon, C.W. Jones, S. Nair, Continuous zeolite MFI membranes fabricated from 2D MFI nanosheets on ceramic hollow fibers, Angew Chem Int Ed 58 (24) (2019) 8201-8205 [16] Y. Wang, L.J. Li, L.T. Yan, X. Gu, P.C. Dai, D.D. Liu, J.G. Bell, G.M. Zhao, X.B. Zhao, K.M. Thomas, Bottom-up fabrication of ultrathin 2D Zr metal-organic framework nanosheets through a facile continuous microdroplet flow reaction, Chem. Mater. 30 (9) (2018) 3048-3059 [17] L. Ding, Y.Y. Wei, Y.J. Wang, H.B. Chen, J. Caro, H.H. Wang, A two-dimensional lamellar membrane:MXene nanosheet stacks, Angew Chem Int Ed 56 (7) (2017) 1825-1829 [18] Y. Wang, X.C. Wang, M. Antonietti, Polymeric graphitic carbon nitride as a heterogeneous organocatalyst:from photochemistry to multipurpose catalysis to sustainable chemistry, Angew Chem Int Ed 51 (1) (2012) 68-89 [19] B. Ou, J.X. Wang, Y. Wu, S. Zhao, Z. Wang, Efficient removal of Cr (VI) by magnetic and recyclable calcined CoFe-LDH/g-C3N4 via the synergy of adsorption and photocatalysis under visible light, Chem. Eng. J. 380 (2020) 122600 [20] K.T. Cao, Z.Y. Jiang, X.S. Zhang, Y.M. Zhang, J. Zhao, R.S. Xing, S. Yang, C.Y. Gao, F.S. Pan, Highly water-selective hybrid membrane by incorporating g-C3N4 nanosheets into polymer matrix, J. Membr. Sci. 490 (2015) 72-83 [21] X. Gao, Y.M. Li, X.L. Yang, Y.N. Shang, Y. Wang, B.Y. Gao, Z.N. Wang, Highly permeable and antifouling reverse osmosis membranes with acidified graphitic carbon nitride nanosheets as nanofillers, J. Mater. Chem. A 5 (37) (2017) 19875-19883 [22] F. Li, Y.Y. Qu, M.W. Zhao, Efficient helium separation of graphitic carbon nitride membrane, Carbon 95 (2015) 51-57 [23] R.T. Niu, L.Q. Kong, L.Y. Zheng, H.X. Wang, H.F. Shi, Novel graphitic carbon nitride nanosheets/sulfonated poly(ether ether ketone) acid-base hybrid membrane for vanadium redox flow battery, J. Membr. Sci. 525 (2017) 220-228 [24] Y.C. Liu, D.Q. Xie, M.R. Song, L.Z. Jiang, G. Fu, L. Liu, J.Y. Li, Water desalination across multilayer graphitic carbon nitride membrane:Insights from non-equilibrium molecular dynamics simulations, Carbon 140 (2018) 131-138 [25] R.L.G. Lecaros, M.E. Bismonte, B.T. DomaJr, W.S. HungJr, C.C. HuJr, H.A. TsaiJr, S.H. HuangJr, K.R. LeeJr, J.Y. LaiJr, Alcohol dehydration performance of pervaporation composite membranes with reduced graphene oxide and graphene quantum dots homostructured filler, Carbon 162 (2020) 318-327 [26] J.X. Chen, Z.Y. Li, C.B. Wang, H. Wu, G. Liu, Synthesis and characterization of g-C3N4 nanosheet modified polyamide nanofiltration membranes with good permeation and antifouling properties, RSC Adv. 6 (113) (2016) 112148-112157 [27] F. Li, Z.X. Yu, H. Shi, Q.B. Yang, Q. Chen, Y. Pan, G.Y. Zeng, L. Yan, A Mussel-inspired method to fabricate reduced graphene oxide/g-C3N4 composites membranes for catalytic decomposition and oil-in-water emulsion separation, Chem. Eng. J. 322 (2017) 33-45 [28] D.M. Teter, R.J. Hemley, Low-compressibility carbon nitrides, Science 271 (5245) (1996) 53-55 [29] H. Montigaud, B. Tanguy, G. Demazeau, I. Alves, S. Courjault, C3N4:Dream or reality? Solvothermal synthesis as macroscopic samples of the C3N4 graphitic form, J. Mater. Sci. 35 (10) (2000) 2547-2552 [30] E.G. Gillan, Synthesis of nitrogen-rich carbon nitride networks from an energetic molecular azide precursor, Chem. Mater. 12 (12) (2000) 3906-3912 [31] E. Kroke, M. Schwarz, E. Horath-Bordon, P. Kroll, B. Noll, A.D. Norman, Tri-s-triazine derivatives. Part I. From trichloro-tri-s-triazine to graphitic C3N4 structures, New J. Chem. 26 (5) (2002) 508-512 [32] H.Z. Zhao, X.L. Chen, C.C. Jia, T. Zhou, X.H. Qu, J.K. Jian, Y.P. Xu, T. Zhou, A facile mechanochemical way to prepare g-C3N4, Mater. Sci. Eng.:B 122 (2) (2005) 90-93 [33] Y.J. Wen, D. Qu, L. An, X. Gao, W.S. Jiang, D.D. Wu, D.X. Yang, Z.C. Sun, Defective g-C3N4 prepared by the NaBH4 reduction for high-performance H2 production, ACS Sustain. Chem. Eng. 7 (2) (2019) 2343-2349 [34] L. Jia, X.X. Cheng, X.N. Wang, H. Cai, P. He, J.Y. Ma, L.L. Li, Y. Ding, X.X. Fan, Large-scale preparation of g-C3N4 porous nanotubes with enhanced photocatalytic activity by using salicylic acid and melamine, Ind. Eng. Chem. Res. 59 (3) (2020) 1065-1072 [35] H. Miao, G.W. Zhang, X.Y. Hu, J.L. Mu, T.X. Han, J. Fan, C.J. Zhu, L.X. Song, J.T. Bai, X. Hou, A novel strategy to prepare 2D g-C3N4 nanosheets and their photoelectrochemical properties, J. Alloy. Compd. 690 (2017) 669-676 [36] J. Lu, Y. Wang, J.F. Huang, L.Y. Cao, J.Y. Li, G.J. Hai, Z. Bai, One-step synthesis of g-C3NVV hierarchical porous structure nanosheets with dramatic ultraviolet light photocatalytic activity, Mater. Sci. Eng.:B 214 (2016) 19-25 [37] C. Li, C.B. Cao, H.S. Zhu, Graphitic carbon nitride thin films deposited by electrodeposition, Mater. Lett. 58 (12-13) (2004) 1903-1906 [38] A. Thomas, A. Fischer, F. Goettmann, M. Antonietti, J.O. Müller, R. Schlögl, J.M. Carlsson, Graphitic carbon nitride materials:Variation of structure and morphology and their use as metal-free catalysts, J. Mater. Chem. 18 (41) (2008) 4893 [39] Y.H. Wang, X.H. Pan, Q.H. Zheng, Z. Lin, F. Huang, Al-doped ZnO thin film enhancing the photo-catalytic bactericidal performance on the (1 0 0) plane of ZnO single crystal, Catal. Today 224 (2014) 188-192 [40] Y.P. Wang, X.Y. Xia, J.W. Zhu, Y. Li, X. Wang, X.D. Hu, Catalytic activity of nanometer-sized CuO/Fe2O3 on thermal decompositon of AP and combustion of AP-based propellant, Combust. Sci. Technol. 183 (2) (2010) 154-162 [41] S.G. Kumar, L.G. Devi, Review on modified TiO2 photocatalysis under UV/visible light:selected results and related mechanisms on interfacial charge carrier transfer dynamics, J Phys Chem A 115 (46) (2011) 13211-13241 [42] A. Kay, I. Cesar, M. Grätzel, New benchmark for water photooxidation by nanostructured α-Fe2O3 films, J Am Chem Soc 128 (49) (2006) 15714-15721 [43] Cao S, Low J, Yu J, Jaroniec M, Polymeric photocatalysts based on graphitic carbon nitride, Adv Mater 27 (13) (2015) 2150-2176 [44] W.J. Ong, L.L. Tan, Y.H. Ng, S.T. Yong, S.P. Chai, Graphitic Carbon Nitride (g-C3N4)-Based Photocatalysts for Artificial Photosynthesis and Environmental Remediation:Are We a Step Closer To Achieving Sustainability? Chem. Rev. 116 (2016) 7159-7329 [45] N.T. Thanh Truc, L. Giang Bach, N. Thi Hanh, T.D. Pham, N. Thi Phuong Le Chi, D.T. Tran, M.V. Nguyen, V.N. Nguyen, The superior photocatalytic activity of Nb doped TiO2/g-C3N4 direct Z-scheme system for efficient conversion of CO2 into valuable fuels, J Colloid Interface Sci 540 (2019) 1-8 [46] Y. Liu, F.Y. Su, Y.X. Yu, W.D. Zhang, Nano g-C3N4 modified Ti-Fe2O3 vertically arrays for efficient photoelectrochemical generation of hydrogen under visible light, Int. J. Hydrog. Energy 41 (18) (2016) 7270-7279 [47] A. Brunetti, F. Scura, G. Barbieri, E. Drioli, Membrane technologies for CO2 separation, J. Membr. Sci. 359 (1-2) (2010) 115-125 [48] M. Li, X.B. Jiang, G.H. He, Application of membrane separation technology in postcombustion carbon dioxide capture process, Front. Chem. Sci. Eng. 8 (2) (2014) 233-239 [49] Z.Z. Tian, S.F. Wang, Y.T. Wang, X.R. Ma, K.T. Cao, D.D. Peng, X.Y. Wu, H. Wu, Z.Y. Jiang, Enhanced gas separation performance of mixed matrix membranes from graphitic carbon nitride nanosheets and polymers of intrinsic microporosity, J. Membr. Sci. 514 (2016) 15-24 [50] M.J.C. Ordoñez, K.J. BalkusJr, J.P. FerrarisJr, I.H. MusselmanJr, Molecular sieving realized with ZIF-8/Matrimid® mixed-matrix membranes, J. Membr. Sci. 361 (1-2) (2010) 28-37 [51] C. Casado-Coterillo, A. Fernández-Barquín, B. Zornoza, C. Téllez, J. Coronas, Á. Irabien, Synthesis and characterisation of MOF/ionic liquid/chitosan mixed matrix membranes for CO2/N2 separation, RSC Adv. 5 (124) (2015) 102350-102361 [52] J.Y. Yu, F.L. Chi, Y.P. Sun, J.J. Guo, X.G. Liu, Assembled porous Fe3O4@g-C3N4 hybrid nanocomposites with multiple interface polarization for stable microwave absorption, Ceram. Int. 44 (16) (2018) 19207-19216 [53] R. Peymanfar, J. Karimi, R. Fallahi, Novel, promising, and broadband microwave-absorbing nanocomposite based on the graphite-like carbon nitride/CuS, J. Appl. Polym. Sci. 137 (9) (2020) 48430 [54] Y.J. Ji, H.L. Dong, H.P. Lin, L.L. Zhang, T.J. Hou, Y.Y. Li, Heptazine-based graphitic carbon nitride as an effective hydrogen purification membrane, RSC Adv. 6 (57) (2016) 52377-52383 [55] S.W. de Silva, A. Du, W. Senadeera, Y. Gu, Strained graphitic carbon nitride for hydrogen purification, J. Membr. Sci. 528 (2017) 201-205 [56] Y. Guo, C.M. Tang, X.B. Wang, C. Wang, L. Fu, Density functional calculations of efficient H2 separation from impurity gases (H2, N2, H2O, CO, Cl2, and CH4) via bilayer g-C3N4 membrane, Chinese Phys. B 28 (4) (2019) 048102 [57] J.M. Hou, Y.Y. Wei, S. Zhou, Y.J. Wang, H.H. Wang, Highly efficient H2/CO2 separation via an ultrathin metal-organic framework membrane, Chem. Eng. Sci. 182 (2018) 180-188 [58] M. Soto-Herranz, M. Sánchez-Báscones, A. Hérnandez-Giménez, J.I. Calvo-Díez, J. Martín-Gil, P. Martín-Ramos, Effects of protonation, hydroxylamination, and hydrazination of g-C3N4 on the performance of matrimid®/g-C3N4 membranes, Nanomaterials (Basel) 8 (12) (2018) E1010. [59] A. Jomekian, B. Bazooyar, J. Esmaeilzadeh, R.M. Behbahani, Highly CO2 selective chitosan/g-C3N4/ZIF-8 membrane on polyethersulfone microporous substrate, Sep. Purif. Technol. 236 (2020) 116307 [60] N.X. Wang, S.L. Ji, G.J. Zhang, J. Li, L. Wang, Self-assembly of graphene oxide and polyelectrolyte complex nanohybrid membranes for nanofiltration and pervaporation, Chem. Eng. J. 213 (2012) 318-329 [61] D.P. Suhas, A.V. Raghu, H.M. Jeong, T.M. Aminabhavi, Graphene-loaded sodium alginate nanocomposite membranes with enhanced isopropanol dehydration performance via a pervaporation technique, RSC Adv. 3 (38) (2013) 17120 [62] J.K. Wu, C.C. Ye, W.H. Zhang, N.X. Wang, K.R. Lee, Q.F. An, Construction of well-arranged graphene oxide/polyelectrolyte complex nanoparticles membranes for pervaporation ethylene glycol dehydration, J. Membr. Sci. 577 (2019) 104-112 [63] S.P. Dharupaneedi, R.V. Anjanapura, J.M. Han, T.M. Aminabhavi, Functionalized graphene sheets embedded in chitosan nanocomposite membranes for ethanol and isopropanol dehydration via pervaporation, Ind. Eng. Chem. Res. 53 (37) (2014) 14474-14484 [64] R.L.G. Lecaros, K.M. Deseo, W.S. Hung, L.L. Tayo, C.C. Hu, Q.F. An, H.A. Tsai, K.R. Lee, J.Y. Lai, Influence of integrating graphene oxide quantum dots on the fine structure characterization and alcohol dehydration performance of pervaporation composite membrane, J. Membr. Sci. 576 (2019) 36-47 [65] R.A. Kirk, M. Putintseva, A. Volkov, P.M. Budd, The potential of polymers of intrinsic microporosity (PIMs) and PIM/graphene composites for pervaporation membranes, BMC Chem. Eng. 1 (1) (2019) 1-19 [66] R. Castro-Muñoz, J. Buera-González, Ó.D.L. Iglesia, F. Galiano, V. Fíla, M. Malankowska, C. Rubio, A. Figoli, C. Téllez, J. Coronas, Towards the dehydration of ethanol using pervaporation cross-linked poly(vinyl alcohol)/graphene oxide membranes, J. Membr. Sci. 582 (2019) 423-434 [67] H. Jin, K. Mo, F. Wen, Y.S. Li, Preparation and pervaporation performance of CAU-10-H MOF membranes, J. Membr. Sci. 577 (2019) 129-136 [68] X.Y. Zou, M.S. Li, S.Y. Zhou, C. Chen, J. Zhong, A.L. Xue, Y. Zhang, Y.J. Zhao, Diffusion behaviors of ethanol and water through g-C3N4-based membranes:Insights from molecular dynamics simulation, J. Membr. Sci. 585 (2019) 81-89 [69] Q.W. Gao, Y.D. Zhu, Y. Ruan, Y.M. Zhang, W. Zhu, X.H. Lu, L.H. Lu, Effect of adsorbed alcohol layers on the behavior of water molecules confined in a graphene nanoslit:A molecular dynamics study, Langmuir 33 (42) (2017) 11467-11474 [70] J. Campbell, G. Szekely,R.P. Davies, D.C. Braddock, A.G. Livingston, Fabrication of hybrid polymer/metal organic framework membranes:mixed matrix membranes versus in situ growth, J. Mater. Chem. A, 2 (2014) 9260-9271 [71] J. Wang, M.S. Li, S.Y. Zhou, A.L. Xue, Y. Zhang, Y.J. Zhao, J. Zhong, Q. Zhang, Graphitic carbon nitride nanosheets embedded in poly(vinyl alcohol) nanocomposite membranes for ethanol dehydration via pervaporation, Sep. Purif. Technol. 188 (2017) 24-37 [72] J. Wang, M.S. Li, S.Y. Zhou, A.L. Xue, Y. Zhang, Y.J. Zhao, J. Zhong, Controllable construction of polymer/inorganic interface for poly(vinyl alcohol)/graphitic carbon nitride hybrid pervaporation membranes, Chem. Eng. Sci. 181 (2018) 237-250 [73] Shi C, Lv C, Wu L, Hou X, Porous chitosan/hydroxyapatite composite membrane for dyes static and dynamic removal from aqueous solution, J Hazard Mater 338 (2017) 241-249 [74] Z.J. Yuan, X.L. Wu, Y.J. Jiang, Y.F. Li, J.J. Huang, L. Hao, J. Zhang, J.T. Wang, Carbon dots-incorporated composite membrane towards enhanced organic solvent nanofiltration performance, J. Membr. Sci. 549 (2018) 1-11 [75] Y. Zhang, S. Zhang, J. Gao, T.S. Chung, Layer-by-layer construction of graphene oxide (GO) framework composite membranes for highly efficient heavy metal removal, J. Membr. Sci. 515 (2016) 230-237 [76] P. Zhang, J.L. Gong, G.M. Zeng, C.H. Deng, H.C. Yang, H.Y. Liu, S.Y. Huan, Cross-linking to prepare composite graphene oxide-framework membranes with high-flux for dyes and heavy metal ions removal, Chem. Eng. J. 322 (2017) 657-666 [77] G. Abdi, A. Alizadeh, S. Zinadini, G. Moradi, Removal of dye and heavy metal ion using a novel synthetic polyethersulfone nanofiltration membrane modified by magnetic graphene oxide/metformin hybrid, J. Membr. Sci. 552 (2018) 326-335 [78] J. Ma, Y. He, G.Y. Zeng, F. Li, Y.B. Li, J.F. Xiao, S.Z. Yang, Bio-inspired method to fabricate poly-dopamine/reduced graphene oxide composite membranes for dyes and heavy metal ion removal, Polym. Adv. Technol. 29 (2) (2018) 941-950 [79] Q.Y. Gan, W.L. Shi, Y.J. Xing, Y. Hou, A polyoxoniobate/g-C3N4 nanoporous material with high adsorption capacity of methylene blue from aqueous solution, Front Chem 6 (2018) 7 [80] H.C. Lan, F. Wang, M. Lan, X.Q. An, H.J. Liu, J.H. Qu, Hydrogen-bond-mediated self-assembly of carbon-nitride-based photo-Fenton-like membranes for wastewater treatment, Environ Sci Technol 53 (12) (2019) 6981-6988 [81] I. Papailias, N. Todorova, T. Giannakopoulou, N. Ioannidis, N. Boukos, C.P. Athanasekou, D. Dimotikali, C. Trapalis, Chemical vs thermal exfoliation of g-C3N4 for NOx removal under visible light irradiation, Appl. Catal. B:Environ. 239 (2018) 16-26 [82] K. Xiao, P. Giusto, L.P. Wen, L. Jiang, M. Antonietti, Nanofluidic ion transport and energy conversion through ultrathin free-standing polymeric carbon nitride membranes, Angew Chem Int Ed Engl 57 (32) (2018) 10123-10126 [83] Wang Y., Li L., Wei Y., Xue J., Chen H., Ding L., Caro J., Wang H., Water transport with ultralow friction through partially exfoliated g-C3N4 nanosheet membranes with self-supporting pacers, Angew. Chem. Int. Edit. 56 (2017) 8974-8980 [84] Y. Wang, N.N. Wu, Y. Wang, H. Ma, J.X. Zhang, L.L. Xu, M.K. Albolkany, B. Liu, Graphite phase carbon nitride based membrane for selective permeation, Nat Commun 10 (1) (2019) 2500 [85] A.A. Aziz, K.C. Wong, P.S. Goh, A.F. Ismail, I.W. Azelee, Tailoring the surface properties of carbon nitride incorporated thin film nanocomposite membrane for forward osmosis desalination, J. Water Process. Eng. 33 (2020) 101005 [86] W.Y. Ye, H.W. Liu, F. Lin, J.Y. Lin, S.F. Zhao, S.S. Yang, J.W. Hou, S.G. Zhou, B. van der Bruggen, High-flux nanofiltration membranes tailored by bio-inspired co-deposition of hydrophilic g-C3N4 nanosheets for enhanced selectivity towards organics and salts, Environ. Sci.:Nano 6 (10) (2019) 2958-2967 [87] Y. Wang, L. Liu, J. Xue, J. Hou, L. Ding, H. Wang, Enhanced water flux through graphitic carbon nitride nanosheets membrane by incorporating polyacrylic acid. Aiche, J. 64 (2018) 2181-2188 [88] Y.L. Liu, X.M. Wang, X.Q. Gao, J.F. Zheng, J. Wang, A. Volodin, Y.F. Xie, X. Huang, B. van der Bruggen, J.Y. Zhu, High-performance thin film nanocomposite membranes enabled by nanomaterials with different dimensions for nanofiltration, J. Membr. Sci. 596 (2020) 117717 [89] L. Jiang, X. Yuan, G. Zeng, Z. Wu, J. Liang, X. Chen, L. Leng, H. Wang, H. Wang, Metal-free efficient photocatalyst for stable visible-light photocatalytic degradation of refractory pollutant, Appl. Catal B-Environ. 221 (2018) 715-725 [90] T. Sata, Studies on ion exchange membranes with permselectivity for specific ions in electrodialysis, J. Membr. Sci. 93 (2) (1994) 117-135 [91] Z. Jiang, W. Wan, H. Li, S. Yuan, H. Zhao, P.K. Wong, A hierarchical Z-Scheme α-Fe2O3/g-C3N4 hybrid for enhanced photocatalytic CO2 reduction, Adv. Mater. 30 (2018) 1706108 [92] N. Hou, W. Sun, F. Du, H. Wu, Effect of (super)alkali doping on the electronic and second-order nonlinear optical properties of graphitic C3N4, Optik. 183 (2019) 455-462 [93] A. Alshahrie, M.O. Ansari, High performance supercapacitor applications and DC electrical conductivity retention on surfactant immobilized macroporous ternary polypyrrole/graphitic-C3N4@Graphene nanocomposite, Electron. Mater. Lett. 15 (2) (2019) 238-246 [94] F.L. Fu, Q. Wang, Removal of heavy metal ions from wastewaters:A review, J Environ Manage 92 (3) (2011) 407-418 [95] Z.T. Wu, L. Gao, J. Wang, F.G. Zhao, L.L. Fan, D. Hua, S. Japip, J.R. Xiao, X.J. Zhang, S.F. Zhou, G.W. Zhan, Preparation of glycine mediated graphene oxide/g-C3N4 lamellar membranes for nanofiltration, J. Membr. Sci. 601 (2020) 117948 [96] F. Wang, G. Wang, J.C. Zhang, B.Q. Li, J. Zhang, J. Deng, J.W. Chen, R.L. Wang, Novel sulfonated poly(ether ether ketone)/oxidized g-C3N4 composite membrane for vanadium redox flow battery applications, J. Electroanal. Chem. 797 (2017) 107-112 [97] B. Liu, Y.X. Zhang, Y.H. Jiang, P.H. Qian, H.F. Shi, High performance acid-base composite membranes from sulfonated polysulfone containing graphitic carbon nitride nanosheets for vanadium redox flow battery, J. Membr. Sci. 591 (2019) 117332 [98] L.L. Qu, G. Zhu, J. Ji, T.P. Yadav, Y.J. Chen, G.H. Yang, H. Xu, H.T. Li, Recyclable visible light-driven O-g-C3N4/graphene oxide/N-carbon nanotube membrane for efficient removal of organic pollutants, ACS Appl Mater Interfaces 10 (49) (2018) 42427-42435 [99] M.M. Pendergast, E.M.V. Hoek, A review of water treatment membrane nanotechnologies, Energy Environ. Sci. 4 (6) (2011) 1946 [100] M.J. Chang, W.N. Cui, J. Liu, K. Wang, X.J. Chai, Fabrication and photocatalytic properties of flexible g-C3N4/SiO2 composite membrane by electrospinning method, J. Mater. Sci.:Mater. Electron. 29 (8) (2018) 6771-6778 [101] T.S. Wong, S.H. Kang, S.K.Y. Tang, E.J. Smythe, B.D. Hatton, A. Grinthal, J. Aizenberg, Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity, Nature, 477 (2011) 443-447 [102] Y.B. Wei, Y.X. Zhu, Y.J. Jiang, Photocatalytic self-cleaning carbon nitride nanotube intercalated reduced graphene oxide membranes for enhanced water purification, Chem. Eng. J. 356 (2019) 915-925 [103] Q.J. Xiang, J.G. Yu, M. Jaroniec, Preparation and enhanced visible-light photocatalytic H2-production activity of graphene/C3N4 Composites, J. Phys. Chem. C 115 (15) (2011) 7355-7363 [104] Dong F, Zhao Z, Xiong T, Ni Z, Zhang W, Sun Y, Ho WK, In situ construction of g-C3N4/g-C3N4 metal-free heterojunction for enhanced visible-light photocatalysis, ACS Appl Mater Interfaces 5 (21) (2013) 11392-11401 [105] Q. Zhang, S. Chen, X.F. Fan, H.G. Zhang, H.T. Yu, X. Quan, A multifunctional graphene-based nanofiltration membrane under photo-assistance for enhanced water treatment based on layer-by-layer sieving, Appl. Catal. B:Environ. 224 (2018) 204-213 [106] H.X. Zhao, S. Chen, X. Quan, H.T. Yu, H.M. Zhao, Integration of microfiltration and visible-light-driven photocatalysis on g-C3N4 nanosheet/reduced graphene oxide membrane for enhanced water treatment, Appl. Catal. B:Environ. 194 (2016) 134-140 [107] N.H. Alias, J. Jaafar, S. Samitsu, T. Matsuura, A.F. Ismail, M.H.D. Othman, M.A. Rahman, N.H. Othman, N. Abdullah, S.H. Paiman, N. Yusof, F. Aziz, Photocatalytic nanofiber-coated alumina hollow fiber membranes for highly efficient oilfield produced water treatment, Chem. Eng. J. 360 (2019) 1437-1446 |
[1] | Pan Wang, Mengdei Zhou, Zhuangxin Wei, Lu Liu, Tao Cheng, Xiaohua Tian, Jianming Pan. Preparation of bowl-shaped polydopamine surface imprinted polymer composite adsorbent for specific separation of 2′-deoxyadenosine [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 69-79. |
[2] | Xinxin Li, Hongwei Shao, Shichao Zhang, Yong Li, Jingjing Gu, Qiang Huang, Jin Ran. Two dimensional MoS2 finding its way towards constructing high-performance alkaline recovery membranes [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 155-164. |
[3] | Wenwen Zhang, Zhigang Xue, Liyun Cui, Haoliang Gao, Di Zhao, Rongfei Zhou, Weihong Xing. Synthesis of an IMF zeolite membrane for the separation of xylene isomer [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 205-211. |
[4] | Hammad Saulat, Jianhua Yang, Tao Yan, Waseem Raza, Wensen Song, Gaohong He. Tungsten incorporated mobil-type eleven zeolite membranes: Facile synthesis and tuneable wettability for highly efficient separation of oil/water mixtures [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 242-252. |
[5] | Yuan Liu, Hanting Xiong, Jingwen Chen, Shixia Chen, Zhenyu Zhou, Zheling Zeng, Shuguang Deng, Jun Wang. One-step ethylene separation from ternary C2 hydrocarbon mixture with a robust zirconium metal-organic framework [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 9-15. |
[6] | Borui Liu, Tao Zhang, Yi Zheng, Kailong Li, Hui Pan, Hao Ling. A dynamic control structure of liquid-only transfer stream distillation column [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 135-145. |
[7] | Yafei Su, Xuke Zhang, Hui Li, Donglai Peng, Yatao Zhang. In-situ incorporation of halloysite nanotubes with 2D zeolitic imidazolate framework-L based membrane for dye/salt separation [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 103-111. |
[8] | Shuangtai Liu, Lei He, Qiuxiang Yao, Xi Li, Linyang Wang, Jing Wang, Ming Sun, Xiaoxun Ma. Separation and analysis of six fractions in low temperature coal tar by column chromatography [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 256-265. |
[9] | Wende Tian, Jiawei Zhang, Zhe Cui, Haoran Zhang, Bin Liu. Microscopic mechanism study and process optimization of dimethyl carbonate production coupled biomass chemical looping gasification system [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 291-305. |
[10] | Hui Yi Leong, Xiao-Qian Fu, Xiang-Yu Liu, Shan-Jing Yao, Dong-Qiang Lin. Characterisation and separation of infectious bursal disease virus-like particles using aqueous two-phase systems [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 72-78. |
[11] | Yujia Cui, Zhiqiang Tan, Yanan Wang, Shuxian Shi, Xiaonong Chen. One-step crosslinking preparation of tannic acid particles for the adsorption and separation of cationic dyes [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 309-318. |
[12] | Iltaf Khan, Chunjuan Wang, Shoaib Khan, Jinyin Chen, Aftab Khan, Sayyar Ali Shah, Aihua Yuan, Sohail Khan, Mehwish K. Butt, Humaira Asghar. Bio-capped and green synthesis of ZnO/g-C3N4 nanocomposites and its improved antibiotic and photocatalytic activities: An exceptional approach towards environmental remediation [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 215-224. |
[13] | Xingzhong Li, Kunlin Yu, Zibo He, Bo Liu, Rongfei Zhou, Weihong Xing. Improved SSZ-13 thin membranes fabricated by seeded-gel approach for efficient CO2 capture [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 273-280. |
[14] | Wufeng Wu, Xilu Hong, Jiang Fan, Yanying Wei, Haihui Wang. Research progress on the substrate for metal–organic framework (MOF) membrane growth for separation [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 299-313. |
[15] | Taoyan Mao, Runhui Xiao, Peng Liu, Jiale Chen, Junqiang Luo, Su Luo, Fengwei Xie, Cheng Zheng. Facile fabrication of durable superhydrophobic fabrics by silicon polyurethane membrane for oil/water separation [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 73-83. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||