[1] F. Garcia-Ochoa, E. Gomez,V.E. Santos, Fluid dynamic conditions and oxygen availability effects on microbial cultures in STBR:An overview, Biochem. Eng. J. 164 (2020) 107803 [2] L.W. Adams, M. Barigou, CFD analysis of caverns and pseudo-caverns developed during mixing of non-newtonian fluids, Chem. Eng. Res. Des. 85 (A5) (2007) 598-604 [3] R.S. Ghadge, A.W. Patwardhan, S.B. Sawant, J.B. Joshi, Effect of flow pattern on cellulase deactivation in stirred tank bioreactors, Chem. Eng. Sci. 60 (4) (2005) 1067-1083 [4] C. Selomulya, G. Bushell, R. Amal, T.D. Waite, Aggregate properties in relation to aggregation conditions under various applied shear environments, Int. J. Miner. Process. 73 (2-4) (2004) 295-307 [5] J. Ramirez-Munoz, G. Martinez-de-Jesus, A. Soria, A. Alonso, L.G. Torres, Assessment of the effective viscous dissipation for deagglomeration processes induced by a high shear impeller in a stirred tank, Adv. Powder Technol. 27 (5) (2016) 1885-1897 [6] A.E. DeJong, R.W. Hartel, Impact of shear on crystallization behavior of sorbitol, J. Food Eng. 263 (2019) 30-37 [7] W.W. Hu, C. Berdugo, J.J. Chalmers, The potential of hydrodynamic damage to animal cells of industrial relevance:current understanding, Cytotechnology 63 (5) (2011) 445-460 [8] Y. Chisti, Hydrodynamic damage to animal cells, Crit. Rev. Biotechnol. 21 (2) (2001) 67-110 [9] C.M. Mcfarlane, A.W. Nienow, Studies of high solidity ratio hydrofoil impellers for aerated bioreactors.1. Review, Biotechnol. Prog. 11 (6) (1995) 601-607 [10] J. Wu, L.J. Graham, N.N. Mehidi, Estimation of agitator flow shear rate, AIChE J. 52 (7) (2006) 2323-2332 [11] D.S. Dickey, J.B. Fasano, How geometry & viscosity influence mixing, Chem. Eng. 111 (2) (2004) 42-46 [12] A.B. Metzner, R.E. Otto, Agitation of non-Newtonian fluids, AIChE J. 3 (1) (1957) 3-10 [13] P.H. Calderbank, M.B. Moo-Young, The prediction of power consumption in the agitation of non-Newtonian fluids, Chem. Eng. Res. Des. 37 (1959) 26-33 [14] W. Kelly, B. Gigas, Using CFD to predict the behavior of power law fluids near axial-flow impellers operating in the transitional flow regime, Chem. Eng. Sci. 58 (10) (2003) 2141-2152 [15] K. Wichterle, M. Kadlec, L. Zak, P. Mitschka, Shear rates on turbine impeller blades, Chem. Eng. Commun. 26 (1-3) (1984) 25-32 [16] J.A. Sanchez Perez, E.M. Rodriguez Porcel, J.L. Casas Lopez, J.M. Fernandez Sevilla, Y. Chisti, Shear rate in stirred tank and bubble column bioreactors, Chem. Eng. J. 124 (2006) 1-5 [17] D.F. Del Pozo, A. Line, K.M. Van Geem, C. Le Men, I. Nopens, Hydrodynamic analysis of an axial impeller in a non-Newtonian fluid through particle image velocimetry, AIChE J. 66 (6) (2020) e16939 [18] J.K. Jiang, J. Wu, S. Poncin, H.Z. Li, Effect of hydrodynamic shear on biogas production and granule characteristics in a continuous stirred tank reactor, Process Biochem. 51 (3) (2016) 345-351 [19] Y.L. Zhang, Z.M. Gao, Z.P. Li, J.J. Derksen, Transitional flow in a Rushton turbine stirred tank, AIChE J. 63 (8) (2017) 3610-3623 [20] A. Story, Z. Jaworski, M.J. Simmons, E. Nowak, Comparative PIV and LDA studies of Newtonian and non-Newtonian flows in an agitated tank, Chem. Pap. 72 (3) (2018) 593-602 [21] J. Ramsay, M.J.H. Simmons, A. Ingram, E.H. Stitt, Mixing of Newtonian and viscoelastic fluids using "butterfly" impellers, Chem. Eng. Sci. 139 (2016) 125-141 [22] M.L. Collignon, A. Delafosse, M. Crine, D. Toye, Axial impeller selection for anchorage dependent animal cell culture in stirred bioreactors:Methodology based on the impeller comparison at just-suspended speed of rotation, Chem. Eng. Sci. 65 (22) (2010) 5929-5941 [23] J. Sossa-Echeverria, F. Taghipour, Computational simulation of mixing flow of shear thinning non-Newtonian fluids with various impellers in a stirred tank, Chem. Eng. Process. Process Intensif. 93 (2015) 66-78 [24] M. Taghavi, R. Zadghaffari, J. Moghaddas, Y. Moghaddas, Experimental and CFD investigation of power consumption in a dual Rushton turbine stirred tank, Chem. Eng. Res. Des. 89 (3a) (2011) 280-290 [25] N.N. Ma, Bioreactor scale-up strategies in large scale production of antibody, Prog. Pharm. Sci. 41 (2017) 645-652. (in Chinese) [26] F. Garcia-Ochoa, E. Gomez, Bioreactor scale-up and oxygen transfer rate in microbial processes:An overview, Biotechnol. Adv. 27 (2) (2009) 153-176 [27] F. Garcia-Ochoa, S. Escobar, E. Gomez, Specific oxygen uptake rate as indicator of cell response of Rhodococcus erythropolis cultures to shear effects, Chem. Eng. Sci. 122 (2015) 491-499 [28] Y. Liu, Z.J. Wang, J.Y. Xia, C. Haringa, Y.P. Liu, J. Chu, Y.P. Zhuang, S.L. Zhang, Application of Euler-Lagrange CFD for quantitative evaluating the effect of shear force on Carthamus tinctorius L. cell in a stirred tank bioreactor, Biochem. Eng. J. 114 (2016) 212-220 [29] J.B. Sieck, T. Cordes, W.E. Budach, M.H. Rhiel, Z. Suemeghy, C. Leist, T.K. Villiger, M. Morbidelli, M. Soos, Development of a scale-down model of hydrodynamic stress to study the performance of an industrial CHO cell line under simulated production scale bioreactor conditions, J. Biotechnol. 164 (1) (2013) 41-49 [30] B.S. Borys, E.L. Roberts, A. Le, M.S. Kallos, Scale-up of embryonic stem cell aggregate stirred suspension bioreactor culture enabled by computational fluid dynamics modeling, Biochem. Eng. J. 133 (2018) 157-167 [31] A.R. Lara, E. Galindo, O.T. Ramirez, L.A. Palomares, Living with heterogeneities in bioreactors, Mol. Biotechnol. 34 (3) (2006) 355-381 [32] Y. Xu, B. Wu, P.C. Luo, Investigation on the flow characteristics of a novel multi-blade combined agitator by time-resolved particle image velocimetry and large eddy simulation, AIChE J. 66 (8) (2020) e16277 [33] A. Gabriele, A.W. Nienow, M.J.H. Simmons, Use of angle resolved PIV to estimate local specific energy dissipation rates for up- and down-pumping pitched blade agitators in a stirred tank, Chem. Eng. Sci. 64 (1) (2009) 126-143 [34] C. Li, X.N. Teng, H.D. Peng, X.P. Yi, Y.P. Zhuang, S.L. Zhang, J.Y. Xia, Novel scale-up strategy based on three-dimensional shear space for animal cell culture, Chem. Eng. Sci. 212 (2020) 115329 [35] Q. Tang, S.S.Ye, Y.D. Wang, Mixing time and flow characteristic in square pump-mix mixer under different scale-up criteria, CIESC Journal 67 (2016) 448-457. (in Chinese) [36] C. Yang, T. Wang, Z.-S. Mao, J.C. Cheng, X.Y. Li, G.Z. Yu, A stirring impeller device for generating centripetal flow, China Pat., 102049208 (2009) [37] T. Li, Z.T. Jia, Q.H. Zhang, C. Yang, Z.-S. Mao, Comparison of macro-mixing characteristics of a stirred tank with different impellers, CIESC Journal 70 (2019) 32-38 (in Chinese) [38] Z.P. Chen, X.W. Zhang, X.H. Lin, Mixing and mixing equipment design and selection manual, Chemical Industry Press, Beijing, 2004 [39] Z.P. Chen, X.W. Zhang, X.H. Lin, Mixing and mixing equipment design and selection manual, Chemical Industry Press, Beijing, 2004 [40] N.A. Stathopoulos, J.D. Hellums, Shear stress effects on human embryonic kidney cells in Vitro, Biotechnol. Bioeng. 27 (7) (1985) 1021-1026 [41] D.A. Wolf, T.J. Goodwin, T.L. Prewett, G.F. Spaulding, Reduced shear stress:A major component in the ability of mammalian tissues to form three-dimensional assemblies in simulated microgravity, J. Cell. Biochem. 51 (1993) 301-311 [42] X. Yan, Z.Q. Zhang, C.Z. Gu, H.S. Hong, Cell culture of impeller suitable for animals and its numerical simulation, Mod. Chem. Ind. 10 (34) (2014) 162-166 (in Chinese) [43] H. Wu, G.K. Patterson, Laser-Doppler measurements of turbulent-flow parameters in a stirred mixer, Chem. Eng. Sci. 44 (10) (1989) 2207-2221 [44] H.Z. Lu, C. Li, W.J. Tang, Z.J. Wang, J.Y. Xia, S.L. Zhang, Y.P. Zhuang, J. Chu, H. Noorman, Dependence of fungal characteristics on seed morphology and shear stress in bioreactors, Bioprocess Biosyst. Eng. 38 (5) (2015) 917-928 |