Chinese Journal of Chemical Engineering ›› 2022, Vol. 43 ›› Issue (3): 24-30.DOI: 10.1016/j.cjche.2021.10.029
Previous Articles Next Articles
Ding-Ming Xue, Wen-Juan Zhang, Xiao-Qin Liu, Shi-Chao Qi, Lin-Bing Sun
Received:
2021-08-24
Revised:
2021-10-12
Online:
2022-04-28
Published:
2022-03-28
Contact:
Shi-Chao Qi,E-mail:shichao_qi@njtech.edu.cn;Lin-Bing Sun,E-mail:lbsun@njtech.edu.cn
Supported by:
Ding-Ming Xue, Wen-Juan Zhang, Xiao-Qin Liu, Shi-Chao Qi, Lin-Bing Sun
通讯作者:
Shi-Chao Qi,E-mail:shichao_qi@njtech.edu.cn;Lin-Bing Sun,E-mail:lbsun@njtech.edu.cn
基金资助:
Ding-Ming Xue, Wen-Juan Zhang, Xiao-Qin Liu, Shi-Chao Qi, Lin-Bing Sun. Fabrication of azobenzene-functionalized porous polymers for selective CO2 capture[J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 24-30.
Ding-Ming Xue, Wen-Juan Zhang, Xiao-Qin Liu, Shi-Chao Qi, Lin-Bing Sun. Fabrication of azobenzene-functionalized porous polymers for selective CO2 capture[J]. 中国化学工程学报, 2022, 43(3): 24-30.
[1] S. Chu, A. Majumdar, Opportunities and challenges for a sustainable energy future, Nature 488 (7411) (2012) 294-303 [2] W. Li, J. Liu, D.Y. Zhao, Mesoporous materials for energy conversion and storage devices, Nat. Rev. Mater. 1 (6) (2016) 1-17 [3] L.B. Sun, Y.H. Kang, Y.Q. Shi, Y. Jiang, X.Q. Liu, Highly selective capture of the greenhouse gas CO2 in polymers, ACS Sustainable Chem. Eng. 3 (12) (2015) 3077-3085 [4] J.J. Cai, J.B. Qi, C.P. Yang, X.B. Zhao, Poly(vinylidene chloride)-based carbon with ultrahigh microporosity and outstanding performance for CH4 and H2 storage and CO2 capture, ACS Appl Mater Interfaces 6 (5) (2014) 3703-3711 [5] C.M. Zhang, W. Song, Q.L. Ma, L.J. Xie, X.C. Zhang, H. Guo, Enhancement of CO2 capture on biomass-based carbon from black locust by KOH activation and ammonia modification, Energy Fuels 30 (5) (2016) 4181-4190 [6] W.L. Gao, S.Y. Liang, R.J. Wang, Q. Jiang, Y. Zhang, Q.W. Zheng, B.Q. Xie, C.Y. Toe, X.C. Zhu, J.Y. Wang, L. Huang, Y.S. Gao, Z. Wang, C. Jo, Q. Wang, L.D. Wang, Y.F. Liu, B. Louis, J. Scott, A.C. Roger, R. Amal, H. He, S.E. Park, Industrial carbon dioxide capture and utilization:State of the art and future challenges, Chem Soc Rev 49 (23) (2020) 8584-8686 [7] S.J. Han, S.M. Hwang, H.G. Park, C.D. Zhang, K.W. Jun, S.K. Kim, Correction:Identification of active sites for CO2 hydrogenation in Fe catalysts by first-principles microkinetic modelling, J. Mater. Chem. A 8 (35) (2020) 18385 [8] J.W. To, J.J. He, J.G. Mei, R. Haghpanah, Z. Chen, T. Kurosawa, S.C. Chen, W.G. Bae, L.J. Pan, J.B. Tok, J. Wilcox, Z.N. Bao, Hierarchical N-doped carbon as CO2 adsorbent with high CO2 selectivity from rationally designed polypyrrole precursor, J Am Chem Soc 138 (3) (2016) 1001-1009 [9] Y.R. Liang, C. Yang, H.W. Dong, W.Q. Li, H. Hu, Y. Xiao, M.T. Zheng, Y.L. Liu, Facile synthesis of highly porous carbon from rice husk, ACS Sustain. Chem. Eng. 5 (8) (2017) 7111-7117 [10] S.J. Xu, J. He, S.B. Jin, B.E. Tan, Heteroatom-rich porous organic polymers constructed by benzoxazine linkage with high carbon dioxide adsorption affinity, J. Colloid Interface Sci. 509 (2018) 457-462 [11] M. Pardakhti, T. Jafari, Z. Tobin, B. Dutta, E. Moharreri, N.S. Shemshaki, S. Suib, R. Srivastava, Trends in solid adsorbent materials development for CO2 capture, ACS Appl. Mater. Interfaces 11 (38) (2019) 34533-34559 [12] Seah GL, Wang L, Tan LF, Tipjanrawee C, Sasangka WA, Usadi AK, McConnachie JM, Tan KW, Ordered mesoporous alumina with tunable morphologies and pore sizes for CO2 capture and dye separation, ACS Appl Mater Interfaces 13 (30) (2021) 36117-36129 [13] W.G. Lu, J.P. Sculley, D.Q. Yuan, R. Krishna, Z.W. Wei, H.C. Zhou, Polyamine-tethered porous polymer networks for carbon dioxide capture from flue gas, Angew Chem Int Ed Engl 51 (30) (2012) 7480-7484 [14] D.K. Maity, A. Dey, S. Ghosh, A. Halder, P.P. Ray, D. Ghoshal, Set of multifunctional azo functionalized semiconducting Cd(II)-MOFs showing photoswitching property and selective CO2 adsorption, Inorg Chem 57 (1) (2018) 251-263 [15] J. Park, B.L. Suh, J. Kim, Computational design of a photoresponsive metal-organic framework for post combustion carbon capture, J. Phys. Chem. C 124 (24) (2020) 13162-13167 [16] S. Karka, S. Kodukula, S.V. Nandury, U. Pal, Polyethylenimine-modified zeolite 13X for CO2 capture:Adsorption and kinetic studies, ACS Omega 4 (15) (2019) 16441-16449 [17] A.A. Dabbawala, I. Ismail, B.V. Vaithilingam, K. Polychronopoulou, G. Singaravel, S. Morin, M. Berthod, Y. Al Wahedi, Synthesis of hierarchical porous Zeolite-Y for enhanced CO2 capture, Microporous Mesoporous Mater. 303 (2020) 110261 [18] Z.Z. Zhang, N.N. Sun, W. Wei, Facile and controllable synthesis of ordered mesoporous carbons with tunable single-crystal morphology for CO2 capture, Carbon 161 (2020) 629-638 [19] O. Buyukcakir, Y. Seo, A. Coskun, Thinking outside the cage:Controlling the extrinsic porosity and gas uptake properties of shape-persistent molecular cages in nanoporous polymers, Chem. Mater. 27 (11) (2015) 4149-4155 [20] E. Kolodzeiski, S. Amirjalayer, Atomistic insight into the host-guest interaction of a photo-responsive metal-organic framework. (2019). [21] P. Tan, Y. Jiang, X.Q. Liu, L.B. Sun, Making porous materials respond to visible light, ACS Energy Lett. 4 (11) (2019) 2656-2667 [22] Y.L. Zhu, W. Zhang, Reversible tuning of pore size and CO2adsorption in azobenzene functionalized porous organic polymers, Chem. Sci. 5 (12) (2014) 4957-4961 [23] G. Das, T. Prakasam, M.A. Addicoat, S.K. Sharma, F. Ravaux, R. Mathew, M. Baias, R. Jagannathan, M.A. Olson, A. Trabolsi, Azobenzene-equipped covalent organic framework:Light-operated reservoir, J. Am. Chem. Soc. 141 (48) (2019) 19078-19087 [24] Y. Jiang, J. Park, P. Tan, L. Feng, X.Q. Liu, L.B. Sun, H.C. Zhou, Maximizing photoresponsive efficiency by isolating metal-organic polyhedra into confined nanoscaled spaces, J. Am. Chem. Soc. 141 (20) (2019)8221-8227 [25] Y. Jiang, P. Tan, S.C. Qi, X.Q. Liu, J.H. Yan, F. Fan, L.B. Sun, Metal-organic frameworks with target-specific active sites switched by photoresponsive motifs:Efficient adsorbents for tailorable CO2 capture, Angew Chem Int Ed Engl 58 (20) (2019) 6600-6604 [26] O. Buyukcakir, S.H. Je, J. Park, H.A. Patel, Y. Jung, C.T. Yavuz, A. Coskun, Systematic investigation of the effect of polymerization routes on the gas-sorption properties of nanoporous azobenzene polymers, Chemistry 21 (43) (2015) 15320-15327 [27] R.H. Huang, M.R. Hill, R. Babarao, N.V. Medhekar, CO2 adsorption in azobenzene functionalized stimuli responsive metal-organic frameworks, J. Phys. Chem. C 120 (30) (2016) 16658-16667 [28] L. Gong le, X.F. Feng, F. Luo, Novel azo-metal-organic framework showing a 10-connected bct net, breathing behavior, and unique photoswitching behavior toward CO2, Inorg. Chem. 54 (24) (2015)11587-11589 [29] S.C. Qi, Y. Liu, A.Z. Peng, D.M. Xue, X. Liu, X.Q. Liu, L.B. Sun, Fabrication of porous carbons from mesitylene for highly efficient CO2 capture:A rational choice improving the carbon loop, Chem. Eng. J. 361 (2019) 945-952 [30] Castellanos S, Goulet-Hanssens A, Zhao F, Dikhtiarenko A, Pustovarenko A, Hecht S, Gascon J, Kapteijn F, Bléger D, Structural effects in visible-light-responsive metal-organic frameworks incorporating ortho-fluoroazobenzenes, Chemistry 22 (2) (2016) 746-752 [31] A.Z. Peng, S.C. Qi, X. Liu, D.M. Xue, S.S. Peng, G.X. Yu, X.Q. Liu, L.B. Sun, N-doped porous carbons derived from a polymer precursor with a record-high N content:Efficient adsorbents for CO2 capture, Chem. Eng. J. 372 (2019) 656-664 [32] D.M. Xue, S.C. Qi, Q.Z. Zeng, R.J. Lu, J.H. Long, C. Luo, X.Q. Liu, L.B. Sun, Fabrication of nitrogen-doped porous carbons derived from ammoniated copolymer precursor:Record-high adsorption capacity for indole, Chem. Eng. J. 374 (2019) 1005-1012 [33] W. An, D. Aulakh, X. Zhang, W. Verdegaal, K.R. Dunbar, M. Wriedt, Switching of adsorption properties in a zwitterionic metal-organic framework triggered by photogenerated radical triplets, Chem. Mater. 28 (21) (2016) 7825-7832 [34] R. Lyndon, K. Konstas, B.P. Ladewig, P.D. Southon, P.C.J. Kepert, M.R. Hill, Dynamic photo-switching in metal-organic frameworks as a route to low-energy carbon dioxide capture and release, Angew. Chem. Int. Ed. 52 (13) (2013) 3695-3698 [35] H.Q. Li, M.R. Hill, C. Doblin, S. Lim, A.J. Hill, P. Falcaro, Carbon capture:Visible light triggered CO2 liberation from silver nanocrystals incorporated metal-organic frameworks (adv. funct. mater. 27/2016), Adv. Funct. Mater. 26 (27) (2016) 4805 [36] L.L. Dang, X.J. Zhang, L. Zhang, J.Q. Li, F. Luo, X.F. Feng, Photo-responsive azo MOF exhibiting high selectivity for CO2 and xylene isomers, J. Coord. Chem. 69 (7) (2016) 1179-1187 [37] N. Prasetya, B.C. Donose, B.P. Ladewig, A new and highly robust light-responsive Azo-UiO-66 for highly selective and low energy post-combustion CO2 capture and its application in a mixed matrix membrane for CO2/N2 separation, J. Mater. Chem. A 6 (34) (2018) 16390-16402 [38] D. Sensharma, N.Y. Zhu, S. Tandon, S. Vaesen, G.W. Watson, W. Schmitt, Flexible metal-organic frameworks for light-switchable CO2 sorption using an auxiliary ligand strategy, Inorg Chem 58 (15) (2019) 9766-9772 [39] L. Wang, Y. Yang, W.L. Shen, X.M. Kong, P. Li, J.G. Yu, A.E. Rodrigues, CO2 capture from flue gas in an existing coal-fired power plant by two successive pilot-scale VPSA units, Ind. Eng. Chem. Res. 52 (23) (2013) 7947-7955 [40] M. Ishibashi, H. Ota, N. Akutsu, S. Umeda, M. Tajika, J. Izumi, A. Yasutake, T. Kabata, Y. Kageyama, Technology for removing carbon dioxide from power plant flue gas by the physical adsorption method, Energy Convers. Manag. 37 (6-8) (1996) 929-933 [41] B. Liu, L. Ye, R. Wang, J. Yang, Y. Zhang, R. Guan, L. Tian, X. Chen, Phosphorus-doped graphitic carbon nitride nanotubes with amino-rich surface for efficient CO2 capture, enhanced photocatalytic activity, and product selectivity, ACS Appl. Mater. Interfaces 10 (4) (2018) 4001-4009 |
[1] | Yingli Li, Zhishuncheng Li, Guangfei Qu, Rui Li, Shuaiyu Liang, Junhong Zhou, Wei Ji, Huiming Tang. Mechanism, behaviour and application of iron nitrate modified carbon nanotube composites for the adsorption of arsenic in aqueous solutions [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 26-36. |
[2] | Jing Huang, Honghui Cai, Qian Zhao, Yunpeng Zhou, Haibo Liu, Jing Wang. Dual-functional pyrene implemented mesoporous silicon material used for the detection and adsorption of metal ions [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 108-117. |
[3] | Lingli Chen, Yueting Shi, Sijun Xu, Junle Xiong, Fang Gao, Shengtao Zhang, Hongru Li. Enhanced adsorption of target branched compounds including antibiotic norfloxacin frameworks on mild steel surface for efficient protection: An experimental and molecular modelling study [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 212-227. |
[4] | Alexander Nti Kani, Evans Dovi, Aaron Albert Aryee, Runping Han, Zhaohui Li, Lingbo Qu. Mechanisms and reusability potentials of zirconium-polyaziridine-engineered tiger nut residue towards anionic pollutants [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 275-292. |
[5] | Yuan Liu, Hanting Xiong, Jingwen Chen, Shixia Chen, Zhenyu Zhou, Zheling Zeng, Shuguang Deng, Jun Wang. One-step ethylene separation from ternary C2 hydrocarbon mixture with a robust zirconium metal-organic framework [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 9-15. |
[6] | Hui Jiang, Zijian Zhao, Ning Yu, Yi Qin, Zhengwei Luo, Wenhua Geng, Jianliang Zhu. Synthesis, characterization, and performance comparison of boron using adsorbents based on N-methyl-D-glucosamine [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 16-31. |
[7] | Runze Chen, Yuran Chen, Xuemin Liang, Yapeng Kong, Yangyang Fan, Quan Liu, Zhenyu Yang, Feiying Tang, Johnny Muya Chabu, Maru Dessie Walle, Liqiang Wang. Oxidative exfoliation of spent cathode carbon: A two-in-one strategy for its decontamination and high-valued application [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 262-269. |
[8] | Qunfeng Zhang, Bingcheng Li, Yuan Zhou, Deshuo Zhang, Chunshan Lu, Feng Feng, Jinghui Lv, Qingtao Wang, Xiaonian Li. Regulation of the selective hydrogenation performance of sulfur-doped carbon-supported palladium on chloronitrobenzene [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 69-75. |
[9] | Shanghong Ma, Haitao Zhang, Jianbo Qu, Xiuzhong Zhu, Qingfei Hu, Jianyong Wang, Peng Ye, Futao Sai, Shiwei Chen. Preparation of waterborne polyurethane/β-cyclodextrin composite nanosponge by ion condensation method and its application in removing of dyes from wastewater [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 124-136. |
[10] | Yueting Shi, Junhai Zhao, Lingli Chen, Hongru Li, Shengtao Zhang, Fang Gao. Double open mouse-like terpyridine parts based amphiphilic ionic molecules displaying strengthened chemical adsorption for anticorrosion of copper in sulfuric acid solution [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 233-246. |
[11] | Jian Wang, Yuanhui Shen, Donghui Zhang, Zhongli Tang, Wenbin Li. Integrated vacuum pressure swing adsorption and Rectisol process for CO2 capture from underground coal gasification syngas [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 265-279. |
[12] | Yujia Cui, Zhiqiang Tan, Yanan Wang, Shuxian Shi, Xiaonong Chen. One-step crosslinking preparation of tannic acid particles for the adsorption and separation of cationic dyes [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 309-318. |
[13] | Shanshan Mao, Tao Shen, Qing Zhao, Tong Han, Fan Ding, Xin Jin, Manglai Gao. Selective capture of silver ions from aqueous solution by series of azole derivatives-functionalized silica nanosheets [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 319-328. |
[14] | Xingzhong Li, Kunlin Yu, Zibo He, Bo Liu, Rongfei Zhou, Weihong Xing. Improved SSZ-13 thin membranes fabricated by seeded-gel approach for efficient CO2 capture [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 273-280. |
[15] | Tutuk Djoko Kusworo, Monica Yulfarida, Andri Cahyo Kumoro, Dani Puji Utomo. Purification of bioethanol fermentation broth using hydrophilic PVA crosslinked PVDF-GO/TiO2 membrane [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 123-136. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 254
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 178
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||