Chinese Journal of Chemical Engineering ›› 2022, Vol. 43 ›› Issue (3): 86-98.DOI: 10.1016/j.cjche.2022.02.011
Previous Articles Next Articles
Tongyang Zhang1, Guanrun Chu1, Junlin Lyu1, Yongda Cao1, Wentao Xu1, Kui Ma1, Lei Song1, Hairong Yue1,2, Bin Liang1,2
Received:
2021-08-31
Revised:
2022-02-13
Online:
2022-04-28
Published:
2022-03-28
Contact:
Hairong Yue,E-mail:hryue@scu.edu.cn
Supported by:
Tongyang Zhang1, Guanrun Chu1, Junlin Lyu1, Yongda Cao1, Wentao Xu1, Kui Ma1, Lei Song1, Hairong Yue1,2, Bin Liang1,2
通讯作者:
Hairong Yue,E-mail:hryue@scu.edu.cn
基金资助:
Tongyang Zhang, Guanrun Chu, Junlin Lyu, Yongda Cao, Wentao Xu, Kui Ma, Lei Song, Hairong Yue, Bin Liang. CO2 mineralization of carbide slag for the production of light calcium carbonates[J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 86-98.
Tongyang Zhang, Guanrun Chu, Junlin Lyu, Yongda Cao, Wentao Xu, Kui Ma, Lei Song, Hairong Yue, Bin Liang. CO2 mineralization of carbide slag for the production of light calcium carbonates[J]. 中国化学工程学报, 2022, 43(3): 86-98.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2022.02.011
[1] X.P. Jia, Z.W. Li, F. Wang, Y. Qian, Integrated sustainability assessment for chemical processes, Clean Technol. Environ. Policy 18 (5) (2016) 1295-1306. 10.1007/s10098-015-1075-x [2] F. Wang, S.Q. Wang, G. Xin, Z.W. Li, R.R. Tan, X.P. Jia, Integrated sustainability assessment of chemical production chains, J. Clean. Prod. 219 (2019) 894-905. 10.1016/j.jclepro.2019.02.079 [3] X.P. Jia, G. Xin, Y. Qian, Y. Qian, Sectoral co-control of air pollutants:Case of a chlor-alkali/polyvinyl chloride sector in China, J. Clean. Prod. 112 (2016) 1667-1675. 10.1016/j.jclepro.2015.01.074 [4] H.L. Huo, X.L. Liu, Z. Wen, G.F. Lou, R.F. Dou, F.Y. Su, W.N. Zhou, Z.Y. Jiang, Case study of a novel low rank coal to calcium carbide process based on techno-economic assessment, Energy 228 (2021) 120566. 10.1016/j.energy.2021.120566 [5] X.K. Zhang, Z.X. Tong, Y.L. He, X. Hu, Influence of feed architecture on heat and mass transfer in calcium carbide electric furnace, Int. J. Heat Mass Transf. 164 (2021) 120593. 10.1016/j.ijheatmasstransfer.2020.120593 [6] J. Yang, L.P. Ma, H.P. Liu, Y. Wei, B. Keomounlath, Q.X. Dai, Thermodynamics and kinetics analysis of Ca-looping for CO2 capture:Application of carbide slag, Fuel 242 (2019) 1-11. 10.1016/j.fuel.2019.01.018 [7] Y. Zhou, Y.N. Chen, W.L. Li, K.K. Li, Z.Y. Jia, J. Sun, C.W. Zhao, High-temperature CO2 uptake and mechanical strength enhancement of the calcium aluminate cement-bound carbide slag pellets, Energy Fuels 35 (9) (2021) 8117-8125.https://doi.org/10.1021/acs.energyfuels.1c00355 [8] L. Kainiemi, S. Eloneva, A. Toikka, J. Levänen, M. Järvinen, Opportunities and obstacles for CO2 mineralization:CO2 mineralization specific frames in the interviews of Finnish carbon capture and storage (CCS) experts, J. Clean. Prod. 94 (2015) 352-358. 10.1016/j.jclepro.2015.02.016 [9] H. Geerlings, R. Zevenhoven, CO2 mineralization-bridge between storage and utilization of CO2, Annu Rev Chem Biomol Eng 4 (2013) 103-117.https://pubmed.ncbi.nlm.nih.gov/23452171/ [10] S.Ó. Snæbjörnsdóttir, B. Sigfússon, C. Marieni, D. Goldberg, S.R. Gislason, E.H. Oelkers, Carbon dioxide storage through mineral carbonation, Nat. Rev. Earth Environ. 1 (2) (2020) 90-102.https://doi.org/10.1038/s43017-019-0011-8 [11] A. Sanna, M. Uibu, G. Caramanna, R. Kuusik, M.M. Maroto-Valer, A review of mineral carbonation technologies to sequester CO2, Chem. Soc. Rev., 43 (2014) 8049-8080 [12] V. Romanov, Y. Soong, C. Carney, G.E. Rush, B. Nielsen, W. O'Connor, Mineralization of carbon dioxide:A literature review, Chembioeng Rev. 2 (4) (2015) 231-256.https://doi.org/10.1002/cben.201500002 [13] P.K. Naraharisetti, T.Y. Yeo, J. Bu, New classification of CO2 mineralization processes and economic evaluation, Renew. Sustain. Energy Rev. 99 (2019) 220-233. 10.1016/j.rser.2018.10.008 [14] S. Eloneva, P. Mannisto, A. Said, C.J. Fogelholm, R. Zevenhoven, Ammonium salt-based steelmaking slag carbonation:Precipitation of CaCO3 and ammonia losses assessment, Greenh. Gases Sci. Technol. 1 (4) (2011) 305-311.https://doi.org/10.1002/ghg.37 [15] S.Y. Pan, Y.H. Chen, L.S. Fan, H. Kim, X. Gao, T.C. Ling, P.C. Chiang, S.L. Pei, G.W. Gu, CO2 mineralization and utilization by alkaline solid wastes for potential carbon reduction, Nat. Sustain. 3 (5) (2020) 399-405.https://doi.org/10.1038/s41893-020-0486-9 [16] S. Lee, J.W. Kim, S. Chae, J.H. Bang, S.W. Lee, CO2 sequestration technology through mineral carbonation:An extraction and carbonation of blast slag, J. CO2 Util. 16 (2016) 336-345. 10.1016/j.jcou.2016.09.003 [17] S.K. Seo, C.M. Kwon, F.S. Kim, C.J. Lee, Experiment and kinetic modeling for leaching of blast furnace slag using ligand, J. CO2 Util. 27 (2018) 188-195. 10.1016/j.jcou.2018.07.015 [18] S. Eloneva, S. Teir, J. Salminen, C.J. Fogelholm, R. Zevenhoven, Fixation of CO2 by carbonating calcium derived from blast furnace slag, Energy 33 (9) (2008) 1461-1467. 10.1016/j.energy.2008.05.003 [19] C. Jeon, S. Park, J.H. Bang, S. Chae, K. Song, S.W. Lee, Nonpolar surface modification using fatty acids and its effect on calcite from mineral carbonation of desulfurized gypsum, Coatings 8 (1) (2018) 43.https://doi.org/10.3390/coatings8010043 [20] B. Wang, Z.H. Pan, H.G. Cheng, Z.E. Zhang, F.Q. Cheng, A review of carbon dioxide sequestration by mineral carbonation of industrial byproduct gypsum, J. Clean. Prod. 302 (2021) 126930. 10.1016/j.jclepro.2021.126930 [21] O. Rahmani, CO2 sequestration by indirect mineral carbonation of industrial waste red gypsum, J. CO2 Util. 27 (2018) 374-380. 10.1016/j.jcou.2018.08.017 [22] W. Liu, S. Su, K. Xu, Q.D. Chen, J. Xu, Z.J. Sun, Y. Wang, S. Hu, X.L. Wang, Y.T. Xue, J. Xiang, CO2 sequestration by direct gas-solid carbonation of fly ash with steam addition, J. Clean. Prod. 178 (2018) 98-107. 10.1016/j.jclepro.2017.12.281 [23] A. Ćwik, I. Casanova, K. Rausis, N. Koukouzas, K. Zarębska, Carbonation of high-calcium fly ashes and its potential for carbon dioxide removal in coal fired power plants, J. Clean. Prod. 202 (2018) 1026-1034. 10.1016/j.jclepro.2018.08.234 [24] C.Y. Wang, W.J. Bao, Z.C. Guo, H.Q. Li, Carbon dioxide sequestration via steelmaking slag carbonation in alkali solutions:Experimental investigation and process evaluation, Acta Metall. Sin. Engl. Lett. 31 (7) (2018) 771-784. 10.1007/s40195-017-0694-0 [25] H.N. Zhang, C. Gao, B. Chen, J. Tang, D.F. He, A.J. Xu, Stainless steel tailings accelerated direct carbonation process at low pressure:Carbonation efficiency evaluation and chromium leaching inhibition correlation analysis, Energy 155 (2018) 772-781. 10.1016/j.energy.2018.05.058 [26] C.P. Gao, J.X. Cao, L. Yang, Q.W. Zhou, A study on preparation of spherical and ultrafine calcium carbonate from carbide slag treated by HCl, J. Guizhou Univ. Nat. Sci. Ed. (2009) 26(3)90-94 [27] M. Altiner, Use of Taguchi approach for synthesis of calcite particles from calcium carbide slag for CO2 fixation by accelerated mineral carbonation, Arab. J. Chem. 12 (4) (2019) 531-540. 10.1016/j.arabjc.2018.02.015 [28] S.Z. Lv, S.Y. Zhao, M.M. Liu, P.P. Wu, Preparation of calcium carbonate by calcium carbide residue, Adv. Mater. Res. 864-867 (2013) 1963-1967.https://doi.org/10.4028/www.scientific.net/amr.864-867.1963 [29] B.J. Yang, Z.Q. Shao, D.X. Zhang, B.N. Wang, A mild route for the preparation of calcium carbonate rod bundles in large scale from carbide slag, Micro Nano Lett. 16 (3) (2021) 187-193.https://doi.org/10.1049/mna2.12006 [30] Y.J. Li, R.Y. Sun, C.T. Liu, H.L. Liu, C.M. Lu, CO2 capture by carbide slag from chlor-alkali plant in calcination/carbonation cycles, Int. J. Greenh. Gas Control 9 (2012) 117-123. 10.1016/j.ijggc.2012.03.012 [31] Y.J. Li, M.Y. Su, X. Xie, S.M. Wu, C.T. Liu, CO2 capture performance of synthetic sorbent prepared from carbide slag and aluminum nitrate hydrate by combustion synthesis, Appl. Energy 145 (2015) 60-68. 10.1016/j.apenergy.2015.01.061 [32] Y.J. Wang, B.F. Ye, Z.C. Hong, Y.H. Wang, M.H. Liu, Uniform calcite mircro/nanorods preparation from carbide slag using recyclable citrate extractant, J. Clean. Prod. 253 (2020) 119930. 10.1016/j.jclepro.2019.119930 [33] J. Yang, S.Y. Liu, L.P. Ma, S.Q. Zhao, H.P. Liu, Q.X. Dai, Y.C. Yang, C.H. Xu, X. Xin, X.Q. Zhang, J.Y. Liu, Mechanism analysis of carbide slag capture of CO2 via a gas-liquid-solid three-phase fluidization system, J. Clean. Prod. 279 (2021) 123712. 10.1016/j.jclepro.2020.123712 [34] D.W. Keith, G. Holmes, D. St Angelo, K. Heidel, A process for capturing CO2 from the atmosphere, Joule 2 (8) (2018) 1573-1594. 10.1016/j.joule.2018.05.006 [35] E. Nduagu, J. Fagerlund, R. Zevenhoven, Contribution of iron to the energetics of CO2 sequestration in Mg-silicates-based rock, Energy Convers. Manag. 55 (2012) 178-186. 10.1016/j.enconman.2011.10.023 [36] M. Slotte, I. Romão, R. Zevenhoven, Integration of a pilot-scale serpentinite carbonation process with an industrial lime kiln, Energy 62 (2013) 142-149. 10.1016/j.energy.2013.07.009 [37] I. Romão, M. Slotte, L.M. Gando-Ferreira, R. Zevenhoven, CO2 sequestration with magnesium silicates-Exergetic performance assessment, Chem. Eng. Res. Des. 92 (12) (2014) 3072-3082. 10.1016/j.cherd.2014.05.016 [38] P.K. Naraharisetti, T.Y. Yeo, J. Bu, Factors influencing CO2and energy penalties of CO2Mineralization processes, ChemPhysChem 18 (22) (2017) 3189-3202.https://doi.org/10.1002/cphc.201700565 [39] Y. Wu, F. Wu, G.P. Hu, N.R. Mirza, G.W. Stevens, K.A. Mumford, Modelling of a post-combustion carbon dioxide capture absorber using potassium carbonate solvent in Aspen Custom Modeller, Chin. J. Chem. Eng. 26 (11) (2018) 2327-2336. 10.1016/j.cjche.2018.06.005 [40] J.Q. Gao, C. Li, W.Z. Liu, J.P. Hu, L. Wang, Q. Liu, B. Liang, H.R. Yue, G.Q. Zhang, D.M. Luo, S.Y. Tang, Process simulation and energy integration in the mineral carbonation of blast furnace slag, Chin. J. Chem. Eng. 27 (1) (2019) 157-167. 10.1016/j.cjche.2018.04.012 [41] H.L. Que, C.C. Chen, Thermodynamic modeling of the NH3-CO2-H2O system with electrolyte NRTL model, Ind. Eng. Chem. Res. 50 (19) (2011) 11406-11421.https://doi.org/10.1021/ie201276m [42] J.W. Yu, S.J. Wang, Modeling analysis of energy requirement in aqueous ammonia based CO2 capture process, Int. J. Greenh. Gas Control 43 (2015) 33-45. 10.1016/j.ijggc.2015.10.010 [43] M.K. Zhang, Y.C. Guo, Process simulations of NH3 abatement system for large-scale CO2 capture using aqueous ammonia solution, Int. J. Greenh. Gas Control 18 (2013) 114-127. 10.1016/j.ijggc.2013.07.005 [44] S.H. Zhou, L.Y. Gong, X.Y. Liu, S.Q. Shen, Mathematical modeling and performance analysis for multi-effect evaporation/multi-effect evaporation with thermal vapor compression desalination system, Appl. Therm. Eng. 159 (2019) 113759. 10.1016/j.applthermaleng.2019.113759 [45] M.Z. Hauschild, O. Jolliet, M.A.J. Huijbregts, A bright future for addressing chemical emissions in life cycle assessment, Int. J. Life Cycle Assess. 16 (8) (2011) 697-700. 10.1007/s11367-011-0320-8 [46] M.A. Curran, Life cycle assessment:An international experience, Environ. Prog. 19 (2) (2000) 65-71.https://doi.org/10.1002/ep.670190204 [47] D.N. Chang, C.K.M. Lee, C.H. Chen, Review of life cycle assessment towards sustainable product development, J. Clean. Prod. 83 (2014) 48-60. 10.1016/j.jclepro.2014.07.050 [48] T.T. da Cruz, J.A. Perrella Balestieri, J.M. de Toledo Silva, M.R.N. Vilanova, O.J. Oliveira, I. Ávila, Life cycle assessment of carbon capture and storage/utilization:From current state to future research directions and opportunities, Int. J. Greenh. Gas Control 108 (2021) 103309. 10.1016/j.ijggc.2021.103309 [49] X.Q. Han, N.N. Chen, J.J. Yan, J.P. Liu, M. Liu, S. Karellas, Thermodynamic analysis and life cycle assessment of supercritical pulverized coal-fired power plant integrated with No.0 feedwater pre-heater under partial loads, J. Clean. Prod. 233 (2019) 1106-1122. 10.1016/j.jclepro.2019.06.159 [50] L. Alting, Life cycle engineering and design, CIRP Ann. 44 (2) (1995) 569-580. 10.1016/S0007-8506(07)60504-6 [51] Y. Kim, S.R. Lim, K.A. Jung, J.M. Park, Process-based life cycle CO2 assessment of an ammonia-based carbon capture and storage system, J. Ind. Eng. Chem. 76 (2019) 223-232. 10.1016/j.jiec.2019.03.044 [52] R. Liu, X.L. Wang, S.W. Gao, CO2 capture and mineralization using carbide slag doped fly ash, Greenh. Gases Sci. Technol. 10 (1) (2020) 103-115.https://doi.org/10.1002/ghg.1934 [53] G.R. Chu, C. Li, W.Z. Liu, G.Q. Zhang, H.R. Yue, B. Liang, Y. Wang, D.M. Luo, Facile and cost-efficient indirect carbonation of blast furnace slag with multiple high value-added products through a completely wet process, Energy 166 (2019) 1314-1322. 10.1016/j.energy.2018.10.128 [54] Q.J. Chen, W.J. Ding, H.J. Sun, T.J. Peng, Mineral carbonation of yellow phosphorus slag and characterization of carbonated product, Energy 188 (2019) 116102. 10.1016/j.energy.2019.116102 [55] W.Z. Liu, S. Yin, D.M. Luo, G.Q. Zhang, H.R. Yue, B. Liang, L.M. Wang, C. Li, Optimising the recovery of high-value-added ammonium alum during mineral carbonation of blast furnace slag, J. Alloys Compd. 774 (2019) 1151-1159. 10.1016/j.jallcom.2018.09.392 [56] A.M. Elias, R. de Campos Giordano, A.R. Secchi, F.F. Furlan, Integrating pinch analysis and process simulation within equation-oriented simulators, Comput. Chem. Eng. 130 (2019) 106555. 10.1016/j.compchemeng.2019.106555 [57] K.F. Zhang, Z.L. Liu, S.B. Huang, Y.X. Li, Process integration analysis and improved options for an MEA CO2 capture system based on the pinch analysis, Appl. Therm. Eng. 85 (2015) 214-224 |
[1] | Yuxi Chai, Yanan Zhang, Yannan Tan, Zhiwei Li, Huangzhao Wei, Chenglin Sun, Haibo Jin, Zhao Mu, Lei Ma. Life cycle assessment of high concentration organic wastewater treatment by catalytic wet air oxidation [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 80-88. |
[2] | Heping Xie, Yunpeng Wang, Tao Liu, Yifan Wu, Wenchuan Jiang, Cheng Lan, Zhiyu Zhao, Liangyu Zhu, Dongsheng Yang. Electrochemical CO2 mineralization for red mud treatment driven by hydrogen-cycled membrane electrolysis [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 14-23. |
[3] | Ran An, Shengxin Chen, Shun Hou, Yuting Zhu, Chunhu Li, Xinbao Zhu, Ruixia Liu, Weizhong An. Simulation and design of a heat-integrated double-effect reactive distillation process for propylene glycol methyl ether production [J]. Chinese Journal of Chemical Engineering, 2022, 52(12): 103-114. |
[4] | Xincheng Gu, Xiaochun Zhang, Xiangping Zhang, Chun Deng. Simulation and assessment of manufacturing ethylene carbonate from ethylene oxide in multiple process routes [J]. Chinese Journal of Chemical Engineering, 2021, 29(3): 135-144. |
[5] | Yingjie Xiong, Tahani Aldahri, Weizao Liu, Guanrun Chu, Guoquan Zhang, Dongmei Luo, Hairong Yue, Bin Liang, Chun Li. Simultaneous preparation of TiO2 and ammonium alum, and microporous SiO2 during the mineral carbonation of titanium-bearing blast furnace slag [J]. Chinese Journal of Chemical Engineering, 2020, 28(9): 2256-2266. |
[6] | Cong Luo, Kejing Wu, Hairong Yue, Yingying Liu, Yingming Zhu, Wei Jiang, Houfang Lu, Bin Liang. DBU-based CO2 absorption-mineralization system: Reaction process, feasibility and process intensification [J]. Chinese Journal of Chemical Engineering, 2020, 28(4): 1145-1155. |
[7] | Lan Li, Xiaoting Huang, Quanda Jiang, Luyue Xia, Jiawei Wang, Ning Ai. New process development and process evaluation for capturing CO2 in flue gas from power plants using ionic liquid [emim][Tf2N] [J]. Chinese Journal of Chemical Engineering, 2020, 28(3): 721-732. |
[8] | Xutao Hu, Hao Qin, Biao Hu, Hongye Cheng, Lifang Chen, Zhiwen Qi. A rate-based method for dynamic analysis and optimal design of reactive extraction: n-Hexyl acetate esterification as an example [J]. Chinese Journal of Chemical Engineering, 2020, 28(1): 76-83. |
[9] | Feng Wang, Yanfeng Pu, Jinhai Yang, Taiying Wang, Languang Chen, Ning Zhao, Fukui Xiao. Process design and economic optimization for the indirect synthesis of dimethyl carbonate from urea and methanol [J]. Chinese Journal of Chemical Engineering, 2019, 27(8): 1879-1887. |
[10] | Jianqiu Gao, Chun Li, Weizao Liu, Jinpeng Hu, Lin Wang, Qiang Liu, Bin Liang, Hairong Yue, Guoquan Zhang, Dongmei Luo, Siyang Tang. Process simulation and energy integration in the mineral carbonation of blast furnace slag [J]. Chin.J.Chem.Eng., 2019, 27(1): 157-167. |
[11] | Xiuhui Huang, Zeqiu Li, Ying Tian. Process optimization of an industrial acetic acid dehydration progress via heterogeneous azeotropic distillation [J]. Chin.J.Chem.Eng., 2018, 26(8): 1631-1643. |
[12] | Grazia Leonzio. An innovative trigeneration system using biogas as renewable energy [J]. Chin.J.Chem.Eng., 2018, 26(5): 1179-1191. |
[13] | Chufu Li. Modeling and optimization of industrial Fischer-Tropsch synthesis with the slurry bubble column reactor and iron-based catalyst [J]. Chin.J.Chem.Eng., 2018, 26(5): 1102-1109. |
[14] | Grazia Leonzio. Mathematical model of absorption and hybrid heat pump [J]. , 2017, 25(10): 1492-1504. |
[15] | Grazia Leonzio. Mathematical model of absorption and hybrid heat pump [J]. , 2017, 25(10): 1492-1504. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||