Chinese Journal of Chemical Engineering ›› 2022, Vol. 43 ›› Issue (3): 282-296.DOI: 10.1016/j.cjche.2022.02.010
Previous Articles Next Articles
Yixuan Gong, Jiasai Yao, Ping Wang, Zhenxing Li, Hongjun Zhou, Chunming Xu
Received:
2021-08-26
Revised:
2022-02-14
Online:
2022-04-28
Published:
2022-03-28
Contact:
Zhenxing Li,E-mail:lizx@cup.edu.cn;Hongjun Zhou,E-mail:zhhj63@163.com
Supported by:
Yixuan Gong, Jiasai Yao, Ping Wang, Zhenxing Li, Hongjun Zhou, Chunming Xu
通讯作者:
Zhenxing Li,E-mail:lizx@cup.edu.cn;Hongjun Zhou,E-mail:zhhj63@163.com
基金资助:
Yixuan Gong, Jiasai Yao, Ping Wang, Zhenxing Li, Hongjun Zhou, Chunming Xu. Perspective of hydrogen energy and recent progress in electrocatalytic water splitting[J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 282-296.
Yixuan Gong, Jiasai Yao, Ping Wang, Zhenxing Li, Hongjun Zhou, Chunming Xu. Perspective of hydrogen energy and recent progress in electrocatalytic water splitting[J]. 中国化学工程学报, 2022, 43(3): 282-296.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2022.02.010
[1] P.T. Wang, X. Zhang, J. Zhang, S. Wan, S.J. Guo, G. Lu, J.L. Yao, X.Q. Huang, Precise tuning in platinum-nickel/nickel sulfide interface nanowires for synergistic hydrogen evolution catalysis, Nat. Commun. 8 (2017) 14580.10.1038/ncomms14580 [2] Y.F. Jia, F. Li, K. Fan, L.C. Sun, Cu-based bimetallic electrocatalysts for CO2 reduction, Adv. Powder Mater. (2021), 10.1016/j.apmate.2021.10.003.10.1016/j.apmate.2021.10.003 [3] H.Y. Jing, P. Zhu, X.B. Zheng, Z.D. Zhang, D.S. Wang, Y.D. Li, Theory-oriented screening and discovery of advanced energy transformation materials in electrocatalysis, Adv. Powder Mater. (2021)10.1016/j.apmate.2021.10.004, 10.1016/j.apmate.2021.10.004 [4] B.B. Jiang, F. Liao, Y.Y. Sun, Y.F. Cheng, M.W. Shao, Pt nanocrystals on nitrogen-doped graphene for the hydrogen evolution reaction using Si nanowires as a sacrificial template, Nanoscale 9 (28) (2017) 10138-10144.https://pubmed.ncbi.nlm.nih.gov/28696456/ [5] Z.P. Zhao, H.T. Liu, W.P. Gao, W. Xue, Z.Y. Liu, J. Huang, X.Q. Pan, Y. Huang, Surface-engineered PtNi-O nanostructure with record-high performance for electrocatalytic hydrogen evolution reaction, J. Am. Chem. Soc. 140 (29) (2018) 9046-9050.10.1021/jacs.8b04770 [6] C.C. Gong, White Paper of Hydrogen Energy and Fuel Cell Industry in China, State-owned Assets of Shandong6 (2019) 16 [7] Z.H. Wei, J.M. Sun, Y. Li, A.K. Datye, Y. Wang, Bimetallic catalysts for hydrogen generation, Chem. Soc. Rev. 41 (24) (2012) 7994.10.1039/c2cs35201j [8] L.G. Li, P.T. Wang, Q. Shao, X.Q. Huang, Metallic nanostructures with low dimensionality for electrochemical water splitting, Chem. Soc. Rev. 49 (10) (2020) 3072-3106.10.1039/d0cs00013b [9] N.T. Suen, S.F. Hung, Q. Quan, N. Zhang, Y.J. Xu, H.M. Chen, Electrocatalysis for the oxygen evolution reaction:recent development and future perspectives, Chem. Soc. Rev. 46 (2) (2017) 337-365.10.1039/c6cs00328a [10] G.R. Xu, J. Bai, J.X. Jiang, J.M. Lee, Y. Chen, Polyethyleneimine functionalized platinum superstructures:enhancing hydrogen evolution performance by morphological and interfacial control, Chem. Sci. 8 (12) (2017) 8411-8418.10.1039/c7sc04109h [11] X.J. Cui, P.J. Ren, C. Ma, J. Zhao, R.X. Chen, S.M. Chen, N.P. Rajan, H.B. Li, L. Yu, Z.Q. Tian, D.H. Deng, Robust interface Ru centers for high-performance acidic oxygen evolution, Adv. Mater. 32 (25) (2020) 1908126.10.1002/adma.201908126 [12] J. Yin, J. Jin, M. Lu, B.L. Huang, H. Zhang, Y. Peng, P.X. Xi, C.H. Yan, Iridium single atoms coupling with oxygen vacancies boosts oxygen evolution reaction in acid media, J. Am. Chem. Soc. 142 (43) (2020) 18378-18386.10.1021/jacs.0c05050 [13] F. Mueller-Langer, E. Tzimas, M. Kaltschmitt, S. Peteves, Techno-economic assessment of hydrogen production processes for the hydrogen economy for the short and medium term, Int. J. Hydrog. Energy 32 (16) (2007) 3797-3810.10.1016/j.ijhydene.2007.05.027 [14] T.J. Zhan, R.S. Bie, Q.H. Shen, L. Lin, A. Wu, P. Dong, Application of electrolysis water hydrogen production in the field of renewable energy power generation, IOP Conf. Ser.:Earth Environ. Sci. 598 (1) (2020) 012088.10.1088/1755-1315/598/1/012088 [15] Y. Wang, S.Z. Zhang, Economic assessment of selected hydrogen production methods:a review, Energy Sources B Econ. Plan. Policy 12 (11) (2017) 1022-1029.10.1080/15567249.2017.1350770 [16] P. Basu, Biomass Gasification and Pyrolysis:Practical Design and Theory, Academic Press, Burlington (2010) 167-288 [17] C. Pfeifer, Fluidized Bed Technologies for Near-zero Emission Combustion and Gasification, Woodhead Publishing Inc., Duxford (2013) 971-1001 [18] U. Arena, Fluidized Bed Technologies for Near-Zero Emission Combustion and Gasification, Woodhead Publishing Inc., Duxford (2013) 765-812 [19] X.Y. Long, N. Spiegl, C. Berrueco, N. Paterson, M. Millan, Fluidised bed oxy-fuel gasification of coal:interactions between volatiles and char at varying pressures and fuel feed rates, Chem. Eng. Sci. X 8 (2020) 100068.10.1016/j.cesx.2020.100068 [20] S. Rittmann, C. Herwig, A comprehensive and quantitative review of dark fermentative biohydrogen production, Microb Cell Fact 11 (2012) 115.https://pubmed.ncbi.nlm.nih.gov/22925149/ [21] J.S. Silva, J.S. Mendes, J.A.C. Correia, M.V.P. Rocha, L. Micoli, Cashew apple bagasse as new feedstock for the hydrogen production using dark fermentation process, J. Biotechnol. 286 (2018) 71-78.https://pubmed.ncbi.nlm.nih.gov/30205138/ [22] G. Najafpour, H. Younesi, A.R. Mohamed, Effect of organic substrate on hydrogen production from synthesis gas using Rhodospirillum rubrum, in batch culture, Biochem. Eng. J. 21 (2) (2004) 123-130.10.1016/j.bej.2004.06.001 [23] A.F. Cunha, J.J.M. Órfão, J.L. Figueiredo, Methane decomposition on Ni-Cu alloyed raney-type catalysts, Int. J. Hydrog. Energy 34 (11) (2009) 4763-4772.10.1016/j.ijhydene.2009.03.040 [24] Y.J. Li, W. Gao, L.J. Ci, C.M. Wang, P.M. Ajayan, Catalytic performance of Pt nanoparticles on reduced graphene oxide for methanol electro-oxidation, Carbon 48 (4) (2010) 1124-1130.10.1016/j.carbon.2009.11.034 [25] B.E. Conway, B.V. Tilak, Interfacial processes involving electrocatalytic evolution and oxidation of H2, and the role of chemisorbed H, Electrochimica Acta 47 (22-23) (2002) 3571-3594.10.1016/S0013-4686(02)00329-8 [26] N. Danilovic, R. Subbaraman, D. Strmcnik, V. Stamenkovic, N. Markovic, Electrocatalysis of the HER in acid and alkaline media, J. Serbian Chem. Soc. 78 (12) (2013) 2007-2015.10.2298/jsc131118136d [27] S.S. Choi, S.H. Ha, Water swelling behaviors of silica-reinforced NBR composites in deionized water and salt solution, J. Ind. Eng. Chem. 16 (2) (2010) 238-242.10.1016/j.jiec.2010.01.052 [28] P.P. Su, W. Pei, X.W. Wang, Y.F. Ma, Q.K. Jiang, J. Liang, S. Zhou, J.J. Zhao, J. Liu, G.Q.M. Lu, Exceptional electrochemical HER performance with enhanced electron transfer between Ru nanoparticles and single atoms dispersed on a carbon substrate, Angew. Chem. Int. Ed. 60 (29) (2021) 16044-16050.10.1002/anie.202103557 [29] C. Niether, M.S. Rau, C. Cremers, D.J. Jones, K. Pinkwart, J. Tübke, Development of a novel experimental DEMS set-up for electrocatalyst characterization under working conditions of high temperature polymer electrolyte fuel cells, J. Electroanal. Chem. 747 (2015) 97-103.10.1016/j.jelechem.2015.04.002 [30] X.S. Wang, C.C. Xu, M. Jaroniec, Y. Zheng, S.Z. Qiao, Anomalous hydrogen evolution behavior in high-pH environment induced by locally generated hydronium ions, Nat. Commun. 10 (1) (2019) 4876.https://pubmed.ncbi.nlm.nih.gov/31653845/ [31] H.Y. Jin, X.S. Wang, C. Tang, A. Vasileff, L.Q. Li, A. Slattery, S.Z. Qiao, Stable and highly efficient hydrogen evolution from seawater enabled by an unsaturated nickel surface nitride, Adv. Mater. 33 (13) (2021) 2007508.10.1002/adma.202007508 [32] Y. Sun, R. Li, X.X. Chen, J. Wu, Y. Xie, X. Wang, K.K. Ma, L. Wang, Z. Zhang, Q.L. Liao, Z. Kang, Y. Zhang, A-site management prompts the dynamic reconstructed active phase of perovskite oxide OER catalysts, Adv. Energy Mater. 11 (12) (2021) 2003755.10.1002/aenm.202003755 [33] J. Joo, T. Kim, J. Lee, S.I. Choi, K. Lee, Morphology-controlled metal sulfides and phosphides for electrochemical water splitting, Adv. Mater. 31 (14) (2019) 1806682.10.1002/adma.201806682 [34] C.H. Yang, Z.D. Yang, H. Dong, N. Sun, Y. Lu, F.M. Zhang, G.L. Zhang, Theory-driven design and targeting synthesis of a highly-conjugated basal-plane 2D covalent organic framework for metal-free electrocatalytic OER, ACS Energy Lett. 4 (9) (2019) 2251-2258.10.1021/acsenergylett.9b01691 [35] J.S. Kim, B. Kim, H. Kim, K. Kang, Recent progress on multimetal oxide catalysts for the oxygen evolution reaction, Adv. Energy Mater. 8 (11) (2018) 1702774.10.1002/aenm.201702774 [36] C. Feng, M.B. Faheem, J. Fu, Y.Q. Xiao, C.L. Li, Y.B. Li, Fe-based electrocatalysts for oxygen evolution reaction:progress and perspectives, ACS Catal. 10 (7) (2020) 4019-4047.10.1021/acscatal.9b05445 [37] S. Riyajuddin, K. Azmi, M. Pahuja, S. Kumar, T. Maruyama, C. Bera, K. Ghosh, Super-hydrophilic hierarchical Ni-foam-graphene-carbon nanotubes-Ni2P-CuP2 nano-architecture as efficient electrocatalyst for overall water splitting, ACS Nano 15 (3) (2021) 5586-5599.10.1021/acsnano.1c00647 [38] S.A. Chala, M.C. Tsai, B.W. Olbasa, K. Lakshmanan, W.H. Huang, W.N. Su, Y.F. Liao, J.F. Lee, H.J. Dai, B.J. Hwang, Tuning dynamically formed active phases and catalytic mechanisms of in situ electrochemically activated layered double hydroxide for oxygen evolution reaction, ACS Nano 15 (9) (2021) 14996-15006.10.1021/acsnano.1c05250 [39] S.Y. Jing, L.S. Zhang, L. Luo, J.J. Lu, S.B. Yin, P.K. Shen, P. Tsiakaras, N-doped porous molybdenum carbide nanobelts as efficient catalysts for hydrogen evolution reaction, Appl. Catal. B Environ. 224 (2018) 533-540.10.1016/j.apcatb.2017.10.025 [40] J.G. Chen, Carbide and nitride overlayers on early transition metal surfaces:preparation, characterization, and reactivities, Chem. Rev. 96 (4) (1996) 1477-1498.https://pubmed.ncbi.nlm.nih.gov/11848799/ [41] M. Cabán-Acevedo, M.L. Stone, J.R. Schmidt, J.G. Thomas, Q. Ding, H.C. Chang, M.L. Tsai, J.H. He, S. Jin, Efficient hydrogen evolution catalysis using ternary pyrite-type cobalt phosphosulphide, Nat. Mater. 14 (12) (2015) 1245-1251.10.1038/nmat4410 [42] T.F. Jaramillo, K.P. Jørgensen, J. Bonde, J.H. Nielsen, S. Horch, I. Chorkendorff, Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts, Science 317 (5834) (2007) 100-102.https://pubmed.ncbi.nlm.nih.gov/17615351/ [43] R. Subbaraman, D. Tripkovic, K.C. Chang, D. Strmcnik, A.P. Paulikas, P. Hirunsit, M. Chan, J. Greeley, V. Stamenkovic, N.M. Markovic, Trends in activity for the water electrolyser reactions on 3d M(Ni, Co, Fe, Mn) hydr(oxy)oxide catalysts, Nat. Mater. 11 (6) (2012) 550-557.10.1038/nmat3313 [44] F. Lv, B.L. Huang, J.R. Feng, W.Y. Zhang, K. Wang, N. Li, J.H. Zhou, P. Zhou, W.X. Yang, Y.P. Du, D. Su, S.J. Guo, A highly efficient atomically thin curved PdIr bimetallene electrocatalyst, Natl Sci Rev 8 (9) (2021) nwab019.10.1093/nsr/nwab019 [45] M.W. Zhu, Q. Shao, Y. Qian, X.Q. Huang, Superior overall water splitting electrocatalysis in acidic conditions enabled by bimetallic Ir-Ag nanotubes, Nano Energy 56 (2019) 330-337.10.1016/j.nanoen.2018.11.023 [46] Z.X. Li, C.C. Yu, Y.K. Kang, X. Zhang, Y.Y. Wen, Z.K. Wang, C. Ma, C. Wang, K.W. Wang, X.L. Qu, M. He, Y.W. Zhang, W.Y. Song, Ultra-small hollow ternary alloy nanoparticles for efficient hydrogen evolution reaction, Natl. Sci. Rev. 8 (7) (2021) nwaa204.10.1093/nsr/nwaa204 [47] G.G. Liu, W. Zhou, B. Chen, Q.H. Zhang, X.Y. Cui, B. Li, Z.C. Lai, Y. Chen, Z.C. Zhang, L. Gu, H. Zhang, Synthesis of RuNi alloy nanostructures composed of multilayered nanosheets for highly efficient electrocatalytic hydrogen evolution, Nano Energy 66 (2019) 104173.10.1016/j.nanoen.2019.104173 [48] F. Lv, W.Y. Zhang, W.X. Yang, J.R. Feng, K. Wang, J.H. Zhou, P. Zhou, S.J. Guo, Ir-based alloy nanoflowers with optimized hydrogen binding energy as bifunctional electrocatalysts for overall water splitting, Small Methods 4 (6) (2020) 1900129.10.1002/smtd.201900129 [49] D. Cao, H.X. Xu, D.J. Cheng, Construction of defect-rich RhCu nanotubes with highly active Rh3 Cu1 alloy phase for overall water splitting in all pH values, Adv. Energy Mater. 10 (9) (2020) 1903038.10.1002/aenm.201903038 [50] J.Q. Tian, N.Y. Cheng, Q. Liu, X.P. Sun, Y.Q. He, A.M. Asiri, Self-supported NiMo hollow nanorod array:an efficient 3D bifunctional catalytic electrode for overall water splitting, J. Mater. Chem. A 3 (40) (2015) 20056-20059.10.1039/c5ta04723d [51] S.H. Hong, S.H. Ahn, J. Choi, J.Y. Kim, H.Y. Kim, H.J. Kim, J.H. Jang, H. Kim, S.K. Kim, High-activity electrodeposited NiW catalysts for hydrogen evolution in alkaline water electrolysis, Appl. Surf. Sci. 349 (2015) 629-635.10.1016/j.apsusc.2015.05.040 [52] J. Zhang, Y. Zhou, S. Zhang, S. Li, Q. Hu, L. Wang, L. Wang, F. Ma, Electrochemical preparation and post-treatment of composite porous foam NiZn alloy electrodes with high activity for hydrogen evolution, Sci. Reports 8 (2018) 15071.https://www.nature.com/articles/s41598-018-33205-4%22%3e [53] Z.X. Li, C.C. Yu, Y.Y. Wen, Y. Gao, X.F. Xing, Z.T. Wei, H. Sun, Y.W. Zhang, W.Y. Song, Mesoporous hollow Cu-Ni alloy nanocage from core-shell Cu@Ni nanocube for efficient hydrogen evolution reaction, ACS Catal. 9 (6) (2019) 5084-5095.10.1021/acscatal.8b04814 [54] S.M. Saha, S. VAIDYA, K.V. RAMANUJACHARY, S.E. LOFLAND, A.K. GANGULI, Ternary alloy nanocatalysts for hydrogen evolution reaction, Bull. Mater. Sci. 39 (2) (2016) 433-436.10.1007/s12034-016-1182-2 [55] A. Subramania, A.R. Sathiya Priya, V.S. Muralidharan, Electrocatalytic cobalt-molybdenum alloy deposits, Int. J. Hydrog. Energy 32 (14) (2007) 2843-2847.10.1016/j.ijhydene.2006.12.027 [56] C.L. Fan, D.L. Piron, A. Sleb, P. Paradis, Study of electrodeposited nickel-molybdenum, nickel-tungsten, cobalt-molybdenum, and cobalt-tungsten as hydrogen electrodes in alkaline water electrolysis, J. Electrochem. Soc. 141 (2) (1994) 382-387.10.1149/1.2054736 [57] H.L.S. Santos, P.G. Corradini, M. Medina, L.H. Mascaro, Effect of copper addition on cobalt-molybdenum electrodeposited coatings for the hydrogen evolution reaction in alkaline medium, Int. J. Hydrog. Energy 45 (58) (2020) 33586-33597.10.1016/j.ijhydene.2020.09.128 [58] H. Kim, H. Park, S. Oh, S.K. Kim, Facile electrochemical preparation of nonprecious Co-Cu alloy catalysts for hydrogen production in proton exchange membrane water electrolysis, Int. J. Energy Res. 44 (4) (2020) 2833-2844.10.1002/er.5099 [59] F. Safizadeh, G. Houlachi, E. Ghali, Electrocatalytic activity and corrosion behavior of FeMo and FeMoP coatings employed as cathode material for alkaline water electrolysis, Int. J. Hydrog. Energy 43 (16) (2018) 7938-7945.10.1016/j.ijhydene.2018.03.071 [60] F. Chu, K.Y. Wu, Y.Y. Meng, K. Edalati, H.J. Lin, Effect of high-pressure torsion on the hydrogen evolution performances of a melt-spun amorphous Fe73.5Si13.5B9Cu1Nb3 alloy, Int. J. Hydrog. Energy 46 (49) (2021) 25029-25038.10.1016/j.ijhydene.2021.05.042 [61] W.C. Sheng, H.A. Gasteiger, Y. Shao-Horn, Hydrogen oxidation and evolution reaction kinetics on platinum:acid vs alkaline electrolytes, J. Electrochem. Soc. 157 (11) (2010) B1529.10.1149/1.3483106 [62] X.Y. Yu, X.W. David Lou, Mixed metal sulfides for electrochemical energy storage and conversion, Adv. Energy Mater. 8 (3) (2018) 1701592.10.1002/aenm.201701592 [63] W.J. Zhou, K. Zhou, D.M. Hou, X.J. Liu, G.Q. Li, Y.H. Sang, H. Liu, L.G. Li, S.W. Chen, Three-dimensional hierarchical frameworks based on MoS? nanosheets self-assembled on graphene oxide for efficient electrocatalytic hydrogen evolution, ACS Appl. Mater. Interfaces 6 (23) (2014) 21534-21540.https://pubmed.ncbi.nlm.nih.gov/25347618/ [64] N. Jiang, Q. Tang, M.L. Sheng, B. You, D.E. Jiang, Y.J. Sun, Nickel sulfides for electrocatalytic hydrogen evolution under alkaline conditions:a case study of crystalline NiS, NiS2, and Ni3S2 nanoparticles, Catal. Sci. Technol. 6 (4) (2016) 1077-1084.10.1039/c5cy01111f [65] B. Hinnemann, P.G. Moses, J. Bonde, K.P. Jørgensen, J.H. Nielsen, S. Horch, I. Chorkendorff, J.K. Nørskov, Biomimetic hydrogen evolution:MoS2 nanoparticles as catalyst for hydrogen evolution, J. Am. Chem. Soc. 127 (15) (2005) 5308-5309.https://pubmed.ncbi.nlm.nih.gov/15826154/ [66] Y.G. Li, H.L. Wang, L.M. Xie, Y.Y. Liang, G.S. Hong, H.J. Dai, MoS2 nanoparticles grown on graphene:an advanced catalyst for the hydrogen evolution reaction, J. Am. Chem. Soc. 133 (19) (2011) 7296-7299.https://pubmed.ncbi.nlm.nih.gov/21510646/ [67] X.M. Geng, W. Wu, N. Li, W.W. Sun, J. Armstrong, A. Al-Hilo, M. Brozak, J.B. Cui, T.P. Chen, Three-dimensional structures of MoS2Nanosheets with ultrahigh hydrogen evolution reaction in water reduction, Adv. Funct. Mater. 24 (39) (2014) 6123-6129.10.1002/adfm.201401328 [68] Y. Zhong, X. Xia, F. Shi, J. Zhan, J. Tu, H.J. Fan, Transition metal carbides and nitrides in energy storage and conversion, Adv. Sci. (Weinh) 3 (5) (2016) 1500286.https://pubmed.ncbi.nlm.nih.gov/27812464/ [69] J.L. Shi, Z.H. Pu, Q. Liu, A.M. Asiri, J.M. Hu, X.P. Sun, Tungsten nitride nanorods array grown on carbon cloth as an efficient hydrogen evolution cathode at all pH values, Electrochimica Acta 154 (2015) 345-351.10.1016/j.electacta.2014.12.096 [70] R. Tong, Z. Sun, F. Zhang, X.N. Wang, J.C. Xu, X.Q. Shi, S.P. Wang, H. Pan, N and V coincorporated Ni nanosheets for enhanced hydrogen evolution reaction, ACS Sustainable Chem. Eng. 6 (12) (2018) 16525-16531.10.1021/acssuschemeng.8b03600 [71] H.Y. Jin, Q.F. Gu, B. Chen, C. Tang, Y. Zheng, H. Zhang, M. Jaroniec, S.Z. Qiao, Molten salt-directed catalytic synthesis of 2D layered transition-metal nitrides for efficient hydrogen evolution, Chem 6 (9) (2020) 2382-2394.10.1016/j.chempr.2020.06.037 [72] H.Y. Jin, T. Song, U. Paik, S.Z. Qiao, Metastable two-dimensional materials for electrocatalytic energy conversions, Acc. Mater. Res. 2 (7) (2021) 559-573.10.1021/accountsmr.1c00115 [73] J.Q. Shan, Y. Zheng, B.Y. Shi, K. Davey, S.Z. Qiao, Regulating electrocatalysts via surface and interface engineering for acidic water electrooxidation, ACS Energy Lett. 4 (11) (2019) 2719-2730.10.1021/acsenergylett.9b01758 [74] C.Y. Jian, Q. Cai, W.T. Hong, J. Li, W. Liu, Edge-riched MoSe2/MoO2 hybrid electrocatalyst for efficient hydrogen evolution reaction, Small 14 (13) (2018) 1703798.10.1002/smll.201703798 [75] J.X. Zhao, X. Ren, H.M. Ma, X. Sun, Y. Zhang, T. Yan, Q. Wei, D. Wu, Synthesis of self-supported amorphous CoMoO4 nanowire array for highly efficient hydrogen evolution reaction, ACS Sustainable Chem. Eng. 5 (11) (2017) 10093-10098.10.1021/acssuschemeng.7b02093 [76] Q. Liu, J.Q. Tian, W. Cui, P. Jiang, N.Y. Cheng, A.M. Asiri, X.P. Sun, Carbon nanotubes decorated with CoP nanocrystals:a highly active non-noble-metal nanohybrid electrocatalyst for hydrogen evolution, Angew. Chem. Int. Ed Engl. 53 (26) (2014) 6710-6714.https://pubmed.ncbi.nlm.nih.gov/24845625/ [77] S. Wirth, F. Harnisch, M. Weinmann, U. Schröder, Comparative study of IVB-VIB transition metal compound electrocatalysts for the hydrogen evolution reaction, Appl. Catal. B Environ. 126 (2012) 225-230.10.1016/j.apcatb.2012.07.023 [78] D.V. Esposito, S.T. Hunt, A.L. Stottlemyer, K.D. Dobson, B.E. McCandless, R.W. Birkmire, J.G. Chen, Low-cost hydrogen-evolution catalysts based on monolayer platinum on tungsten monocarbide substrates, Angewandte Chemie 122 (51) (2010) 10055-10058.10.1002/ange.201004718 [79] P. Liu, J.A. Rodriguez, Catalysts for hydrogen evolution from the[NiFe]hydrogenase to the Ni2P(001) surface:the importance of ensemble effect, J. Am. Chem. Soc. 127 (42) (2005) 14871-14878.https://pubmed.ncbi.nlm.nih.gov/16231942/ [80] J. Tian, Q. Liu, Y. Liang, Z. Xing, A.M. Asiri, X. Sun, FeP nanoparticles film grown on carbon cloth:an ultrahighly active 3D hydrogen evolution cathode in both acidic and neutral solutions, ACS Appl. Mater. Interfaces 6 (23) (2014) 20579-20584.https://pubmed.ncbi.nlm.nih.gov/25401517/ [81] H.C. Yang, Y.J. Zhang, F. Hu, Q.B. Wang, Urchin-like CoP nanocrystals as hydrogen evolution reaction and oxygen reduction reaction dual-electrocatalyst with superior stability, Nano Lett. 15 (11) (2015) 7616-7620.10.1021/acs.nanolett.5b03446 [82] L. Zhang, Y.Y. Qi, L. Sun, G.J. Chen, L.X. Wang, M.S. Zhang, D.J. Zeng, Y.N. Chen, X.G. Wang, K.W. Xu, F. Ma, Facile route of nitrogen doping in nickel cobalt phosphide for highly efficient hydrogen evolution in both acid and alkaline electrolytes, Appl. Surf. Sci. 512 (2020) 145715.10.1016/j.apsusc.2020.145715 [83] S. Anantharaj, S.R. Ede, K. Sakthikumar, K. Karthick, S. Mishra, S. Kundu, Recent trends and perspectives in electrochemical water splitting with an emphasis on sulfide, selenide, and phosphide catalysts of Fe, co, and Ni:a review, ACS Catal. 6 (12) (2016) 8069-8097.10.1021/acscatal.6b02479 [84] K. Karthick, S. Anantharaj, S.R. Ede, S. Kundu, Nanosheets of nickel iron hydroxy carbonate hydrate with pronounced OER activity under alkaline and near-neutral conditions, Inorg. Chem. 58 (3) (2019) 1895-1904.https://pubmed.ncbi.nlm.nih.gov/30649867/ [85] S. Anantharaj, S.R. Ede, K. Karthick, S. Sam Sankar, K. Sangeetha, P.E. Karthik, S. Kundu, Precision and correctness in the evaluation of electrocatalytic water splitting:revisiting activity parameters with a critical assessment, Energy Environ. Sci. 11 (4) (2018) 744-771.10.1039/c7ee03457a [86] T. Audichon, T.W. Napporn, C. Canaff, C. Morais, C. Comminges, K.B. Kokoh, IrO2 coated on RuO2 as efficient and stable electroactive nanocatalysts for electrochemical water splitting, J. Phys. Chem. C 120 (5) (2016) 2562-2573.10.1021/acs.jpcc.5b11868 [87] L.X. Feng, A.R. Li, Y.X. Li, J. Liu, L. Wang, L.Y. Huang, Y. Wang, X.B. Ge, A highly active CoFe layered double hydroxide for water splitting, ChemPlusChem 82 (3) (2017) 483-488.10.1002/cplu.201700005 [88] B.J. Waghmode, A.P. Gaikwad, C.V. Rode, S.D. Sathaye, K.R. Patil, D.D. Malkhede, Calixarene intercalated NiCo layered double hydroxide for enhanced oxygen evolution catalysis, ACS Sustainable Chem. Eng. 6 (8) (2018) 9649-9660.10.1021/acssuschemeng.7b04788 [89] Y.Y. Wen, Z.T. Wei, J.H. Liu, R. Li, P. Wang, B. Zhou, X. Zhang, J. Li, Z.X. Li, Synergistic cerium doping and MXene coupling in layered double hydroxides as efficient electrocatalysts for oxygen evolution, J. Energy Chem. 52 (2021) 412-420.10.1016/j.jechem.2020.04.009 [90] Z.X. Li, X. Zhang, Y.K. Kang, C.C. Yu, Y.Y. Wen, M.L. Hu, D. Meng, W.Y. Song, Y. Yang, Interface engineering of co-LDH@MOF heterojunction in highly stable and efficient oxygen evolution reaction, Adv. Sci. 8 (2) (2021) 2002631.10.1002/advs.202002631 [91] W.M. Li, S.H. Chen, M.X. Zhong, C. Wang, X.F. Lu, Synergistic coupling of NiFe layered double hydroxides with Co-C nanofibers for high-efficiency oxygen evolution reaction, Chem. Eng. J. 415 (2021) 128879.10.1016/j.cej.2021.128879 [92] H.X. Liao, T. Luo, P.F. Tan, K.J. Chen, L.L. Lu, Y. Liu, M. Liu, J. Pan, Unveiling role of sulfate ion in nickel-iron (oxy)hydroxide with enhanced oxygen-evolving performance, Adv. Funct. Mater. 31 (38) (2021) 2102772.10.1002/adfm.202102772 [93] Y. Lee, J. Suntivich, K.J. May, E.E. Perry, Y. Shao-Horn, Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions, J. Phys. Chem. Lett. 3 (3) (2012) 399-404.https://pubmed.ncbi.nlm.nih.gov/26285858/ [94] B.H. Han, M. Risch, S. Belden, S. Lee, D. Bayer, E. Mutoro, Y. Shao-Horn, Screening oxide support materials for OER catalysts in acid, J. Electrochem. Soc. 165 (10) (2018) F813-F820.10.1149/2.0921810jes [95] S.M. Galani, A. Mondal, D.N. Srivastava, A.B. Panda, Development of RuO2/CeO2 heterostructure as an efficient OER electrocatalyst for alkaline water splitting, Int. J. Hydrog. Energy 45 (37) (2020) 18635-18644.10.1016/j.ijhydene.2019.08.026 [96] P. Plate, C. Höhn, U. Bloeck, P. Bogdanoff, S. Fiechter, F.F. Abdi, R. van de Krol, A.C. Bronneberg, On the origin of the OER activity of ultrathin manganese oxide films, ACS Appl. Mater. Interfaces 13 (2) (2021) 2428-2436.10.1021/acsami.0c15977 [97] M.A. Kirsanova, V.D. Okatenko, D.A. Aksyonov, R.P. Forslund, J.T. Mefford, K.J. Stevenson, A.M. Abakumov, Bifunctional OER/ORR catalytic activity in the tetrahedral YBaCo4O7.3 oxide, J. Mater. Chem. A 7 (1) (2019) 330-341.10.1039/c8ta09862j [98] A. Dutta, N. Pradhan, Developments of metal phosphides as efficient OER precatalysts, J Phys Chem Lett 8 (1) (2017) 144-152.https://pubmed.ncbi.nlm.nih.gov/27981840/ [99] Y.T. Pi, X.Y. Xing, L.M. Lu, Z.B. He, T.Z. Ren, Hierarchical porous activated carbon in OER with high efficiency, RSC Adv. 6 (104) (2016) 102422-102427.10.1039/c6ra19333a [100] J.Q. Shan, C. Ye, S.M. Chen, T.L. Sun, Y. Jiao, L.M. Liu, C.Z. Zhu, L. Song, Y. Han, M. Jaroniec, Y.H. Zhu, Y. Zheng, S.Z. Qiao, Short-range ordered iridium single atoms integrated into cobalt oxide spinel structure for highly efficient electrocatalytic water oxidation, J. Am. Chem. Soc. 143 (13) (2021) 5201-5211.10.1021/jacs.1c01525 [101] A.S. Souza, L.S. Bezerra, E.S.F. Cardoso, G.V. Fortunato, G. Maia, Nickel pyrophosphate combined with graphene nanoribbon used as efficient catalyst for OER, J. Mater. Chem. A 9 (18) (2021) 11255-11267.10.1039/d1ta00817j [102] H.L. Pan, Y. Wu, C. Li, H.H. Li, Y.Y. Gong, L.Y. Niu, X.J. Liu, C.Q. Sun, S.Q. Xu, Efficient bi-directional OER/ORR catalysis of metal-free C6H4NO2/g-C3N4:density functional theory approaches, Appl. Surf. Sci. 531 (2020) 147292.10.1016/j.apsusc.2020.147292 [103] Q.G. Du, P.P. Su, Z.Z. Cao, J. Yang, C.A.H. Price, J. Liu, Construction of N and Fe co-doped CoO/CoxN interface for excellent OER performance, Sustain. Mater. Technol. 29 (2021) e00293.10.1016/j.susmat.2021.e00293 [104] S. Yue, S.S. Wang, Q.Z. Jiao, X.T. Feng, K. Zhan, Y.Q. Dai, C.H. Feng, H.S. Li, T.Y. Feng, Y. Zhao, Preparation of yolk-shell-structured co x Fe1-x P with enhanced OER performance, ChemSusChem 12 (19) (2019) 4461-4470.10.1002/cssc.201901604 [105] Y. Bai, L.C. Zhang, Q.L. Li, Y.K. Wu, Y.P. Wang, M.W. Xu, S.J. Bao, Self-supported CdP2-CDs-CoP for high-performance OER catalysts, ACS Sustainable Chem. Eng. 9 (3) (2021) 1297-1303.10.1021/acssuschemeng.0c07700 [106] F. He, Y.J. Liu, Q.H. Cai, J.X. Zhao, Size-dependent electrocatalytic activity of ORR/OER on palladium nanoclusters anchored on defective MoS2monolayers, New J. Chem. 44 (37) (2020) 16135-16143.10.1039/d0nj03645e [107] S.J. Yao, C.R. Wu, D.Y. Li, B. Gao, X.X. Wen, Z.Y. Liu, W.Z. Li, Coupling SnS2 and rGO aerogel to CuS for enhanced light-assisted OER electrocatalysis, Dalton Trans. 50 (16) (2021) 5530-5539.10.1039/d1dt00271f [108] R. Guo, S.Q. Zhang, H. Wen, Z.Y. Ni, Y. He, T. Yu, J.H. You, In situ grown CoS on nickel foam pre-deposited with sulphur as an efficient OER electrocatalyst, New J. Chem. 45 (4) (2021) 1887-1892.10.1039/d0nj05156j [109] M. Salmanion, M.M. Najafpour, Structural changes of a NiFe-based metal-organic framework during the oxygen-evolution reaction under alkaline conditions, Int. J. Hydrog. Energy 46 (37) (2021) 19245-19253.10.1016/j.ijhydene.2021.03.107 [110] W.H. Fang, J. Wang, Y. Hu, X.Q. Cui, R.F. Zhu, Y.H. Zhang, C.C. Yue, J.Q. Dang, W. Cui, H. Zhao, Z.X. Li, Metal-organic framework derived Fe-Co-CN/reduced graphene oxide for efficient HER and OER, Electrochimica Acta 365 (2021) 137384.10.1016/j.electacta.2020.137384 [111] Y. Ma, Y.J. Miao, G.M. Mu, D.M. Lin, C.G. Xu, W. Zeng, F.Y. Xie, Highly enhanced OER performance by Er-doped Fe-MOF nanoarray at large current densities, Nanomaterials 11 (7) (2021) 1847.10.3390/nano11071847 |
[1] | Wensheng Li, Liangyuan Qi, Daolin Ye, Wei Cai, Weiyi Xing. Facile modification of aluminum hypophosphate and its flame retardancy for polystyrene [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 90-98. |
[2] | Jing Huang, Honghui Cai, Qian Zhao, Yunpeng Zhou, Haibo Liu, Jing Wang. Dual-functional pyrene implemented mesoporous silicon material used for the detection and adsorption of metal ions [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 108-117. |
[3] | Sufei Wang, Mengjie Hao, Danyang Xiao, Tianmiao Zhang, Hua Li, Zhongshan Chen. Synthesis of porous carbon nanomaterials and their application in tetracycline removal from aqueous solutions [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 200-209. |
[4] | Shanghong Ma, Haitao Zhang, Jianbo Qu, Xiuzhong Zhu, Qingfei Hu, Jianyong Wang, Peng Ye, Futao Sai, Shiwei Chen. Preparation of waterborne polyurethane/β-cyclodextrin composite nanosponge by ion condensation method and its application in removing of dyes from wastewater [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 124-136. |
[5] | Aneela Sabir, Wail Falath, Muhammad Shafiq, Nafisa Gull, Maria Wasim, Karl I. Jacob. Effective desalination and anti-biofouling performance via surface immobilized MWCNTs on RO membrane [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 33-45. |
[6] | Yishuang Wang, Na Li, Mingqiang Chen, Defang Liang, Chang Li, Quan Liu, Zhonglian Yang, Jun Wang. Glycerol steam reforming over hydrothermal synthetic Ni-Ca/attapulgite for green hydrogen generation [J]. Chinese Journal of Chemical Engineering, 2022, 48(8): 176-190. |
[7] | Fu Yang, Ruyi Wang, Shijian Zhou, Xuyu Wang, Yan Kong, Shuying Gao. Mesopore-encaged V-Mn oxides: Progressive insertion approach triggering reconstructed active sites to enhance catalytic oxidative desulfuration [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 182-193. |
[8] | Mingxia Tian, Aili Wang, Hengbo Yin. Evolution of copper nanowires through coalescing of copper nanoparticles induced by aliphatic amines and their electrical conductivities in polyester films [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 284-291. |
[9] | Qi Liu, Gao Cheng, Ming Sun, Weixiong Yu, Xiaohong, Zeng, Shichang Tang, Yongfeng li, Lin Yu. A facile preparation of hausmannite as a high-performance catalyst for toluene combustion [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 392-401. |
[10] | Ying Zhou, Ruiying Li, Zexuan Lv, Jian Liu, Hongjun Zhou, Chunming Xu. Green hydrogen: A promising way to the carbon-free society [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 2-13. |
[11] | Xiangzhao Hu, Junjie Sun, Wanzhen Zheng, Sixing Zheng, Yu Xie, Xiang Gao, Bin Yang, Zhongjian Li, Lecheng Lei, Yang Hou. Layered bismuth oxide/bismuth sulfide supported on carrageenan derived carbon for efficient carbon dioxide electroreduction to formate [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 116-123. |
[12] | Xuanyi Jia, Xiaomin Hu, Qiao Wang, Baiquan Chen, Xingyue Xie, Lihong Huang. Auto-thermal reforming of acetic acid for hydrogen production by ZnxNiyCrOm±δ catalysts: Effect of Cr promoted Ni-Zn intermetallic compound [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 216-221. |
[13] | Feng Guo, Haoran Sun, Yuxing Shi, Fengyu Zhou, Weilong Shi. CdS nanoparticles decorated hexagonal Fe2O3 nanosheets with a Z-scheme photogenerated electron transfer path for improved visible-light photocatalytic hydrogen production [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 266-274. |
[14] | Jiankang Wang, Yajing Wang, Zhongping Yao, Zhaohua Jiang. Metal-organic framework-derived Ni doped Co3S4 hierarchical nanosheets as a monolithic electrocatalyst for highly efficient hydrogen evolution reaction in alkaline solution [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 380-388. |
[15] | Patsakol Prayoonpunratn, Trin Jedsukontorn, Mali Hunsom. Photocatalytic activity of metal nanoparticle-decorated titanium dioxide for simultaneous H2 production and biodiesel wastewater remediation [J]. Chinese Journal of Chemical Engineering, 2021, 36(8): 86-100. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||