Chinese Journal of Chemical Engineering ›› 2022, Vol. 44 ›› Issue (4): 392-401.DOI: 10.1016/j.cjche.2021.02.026
Previous Articles Next Articles
Qi Liu, Gao Cheng, Ming Sun, Weixiong Yu, Xiaohong, Zeng, Shichang Tang, Yongfeng li, Lin Yu
Received:
2020-12-09
Revised:
2021-02-07
Online:
2022-06-18
Published:
2022-04-28
Contact:
Lin Yu,E-mail:gych@gdut.edu.cn
Supported by:
Qi Liu, Gao Cheng, Ming Sun, Weixiong Yu, Xiaohong, Zeng, Shichang Tang, Yongfeng li, Lin Yu
通讯作者:
Lin Yu,E-mail:gych@gdut.edu.cn
基金资助:
Qi Liu, Gao Cheng, Ming Sun, Weixiong Yu, Xiaohong, Zeng, Shichang Tang, Yongfeng li, Lin Yu. A facile preparation of hausmannite as a high-performance catalyst for toluene combustion[J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 392-401.
Qi Liu, Gao Cheng, Ming Sun, Weixiong Yu, Xiaohong, Zeng, Shichang Tang, Yongfeng li, Lin Yu. A facile preparation of hausmannite as a high-performance catalyst for toluene combustion[J]. 中国化学工程学报, 2022, 44(4): 392-401.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2021.02.026
[1] C. He, J. Cheng, X. Zhang, M. Douthwaite, S. Pattisson, Z.P. Hao, Recent advances in the catalytic oxidation of volatile organic compounds:a review based on pollutant sorts and sources, Chem. Rev. 119 (7) (2019) 4471-4568 [2] M. Guo, K. Li, H. Zhang, X. Min, X. Hu, W. Guo, J. Jia, T. Sun, Enhanced catalytic activity of oxygenated VOC deep oxidation on highly active in-situ generated GdMn2O5/GdMnO3 catalysts, J Colloid Interface Sci 578 (2020) 229-241 [3] S. Dissanayake, N. Wasalathanthri, A. Shirazi Amin, J.K. He, S. Poges, D. Rathnayake, S.L. Suib, Mesoporous Co3O4 catalysts for VOC elimination:Oxidation of 2-propanol, Appl. Catal. A:Gen. 590 (2020) 117366 [4] Wang Z, Yang H, Liu R, Xie S, Liu Y, Dai H, Huang H, Deng J, Probing toluene catalytic removal mechanism over supported Pt nano-and single-atom-catalyst, J Hazard Mater 392 (2020) 122258 [5] X. Zhang, L. Song, F. Bi, D. Zhang, Y. Wang, L. Cui, Catalytic oxidation of toluene using a facile synthesized Ag nanoparticle supported on UiO-66 derivative, J Colloid Interface Sci 571 (2020) 38-47 [6] M.H. Yuan, C.C. Chang, C.Y. Chang, W.C. Liao, W.K. Tu, J.Y. Tseng, D.R. Ji, J.L. Shie, Y.H. Chen, Ozone-catalytic oxidation for gaseous 1,2-dichloroethane in air over Pt/Al2O3 catalyst, Journal of the Taiwan Institute of Chemical Engineers 53 (2015) 52-57 [7] Z.Y. Jiang, C. He, N.F. Dummer, J.W. Shi, M.J. Tian, C.Y. Ma, Z.P. Hao, S.H. Taylor, M.D. Ma, Z.X. Shen, Insight into the efficient oxidation of methyl-ethyl-ketone over hierarchically micro-mesostructured Pt/K-(Al)SiO2 nanorod catalysts:Structure-activity relationships and mechanism, Appl. Catal. B:Environ. 226 (2018) 220-233 [8] S. Zhang, H. Wang, H. Si, X. Jia, Z. Wang, Q. Li, J. Kong, J. Zhang, Novel core-shell (epsilon-MnO2/CeO2)@CeO2 composite catalyst with a synergistic effect for efficient formaldehyde oxidation, ACS Appl Mater Interfaces 12 (36) (2020) 40285-40295 [9] Q. Ren, S. Mo, R. Peng, Z. Feng, M. Zhang, L. Chen, M. Fu, J. Wu, D. Ye, Controllable synthesis of 3D hierarchical Co3O4 nanocatalysts with various morphologies for the catalytic oxidation of toluene, Journal of Materials Chemistry A 6 (2) (2018) 498-509 [10] J. Guan, D. Wang, H. Yuan, Y. Guo, J. Dai, Experimental study on catalytic oxidation of toluene with manganese catalysts and ozone at low temperature, IOP Conference Series:Earth and Environmental Science 310 (2019) 042028 [11] Y. Jiang, S.H. Xie, H.G. Yang, J.G. Deng, Y.X. Liu, H.X. Dai, Mn3O4-Au/3DOM La0.6Sr0.4CoO3:High-performance catalysts for toluene oxidation, Catal. Today 281 (2017) 437-446 [12] H. Pan, Y.F. Jian, C.W. Chen, C. He, Z.P. Hao, Z.X. Shen, H.X. Liu, Sphere-shaped Mn3O4 catalyst with remarkable low-temperature activity for methyl-ethyl-ketone combustion, Environ Sci Technol 51 (11) (2017) 6288-6297 [13] D. Delimaris, T. Ioannides, VOC oxidation over MnOx-CeO2 catalysts prepared by a combustion method, Appl. Catal. B:Environ. 84 (1-2) (2008) 303-312 [14] J.K. Pulleri, S.K. Singh, D. Yearwar, G. Saravanan, A.S. Al-Fatesh, N.K. Labhasetwar, Morphology dependent catalytic activity of Mn3O4 for complete oxidation of toluene and carbon monoxide, Catal. Lett. 151 (1) (2021) 172-183 [15] Y.N. Liao, X. Zhang, R.S. Peng, M.Q. Zhao, D.Q. Ye, Catalytic properties of manganese oxide polyhedra with hollow and solid morphologies in toluene removal, Appl. Surf. Sci. 405 (2017) 20-28 [16] J.Q. Torres, J.M. Giraudon, J.F. Lamonier, Formaldehyde total oxidation over mesoporous MnOx catalysts, Catal. Today 176 (1) (2011) 277-280 [17] J. Wang, S. Yang, H. Sun, J. Qiu, Y. Men, Highly improved soot combustion performance over synergetic MnxCe1-xO2 solid solutions within mesoporous nanosheets, J Colloid Interface Sci 577 (2020) 355-367 [18] S. Xu, X. Yu, X. Liu, C. Teng, Y. Du, Q. Wu, Contrallable synthesis of peony-like porous Mn-CoP nanorod electrocatalyst for highly efficient hydrogen evolution in acid and alkaline, J Colloid Interface Sci 577 (2020), 379-387 [19] T. Li, B. Xue, B. Wang, G. Guo, D. Han, Y. Yan, A. Dong, Tubular monolayer superlattices of hollow Mn3O4 nanocrystals and their oxygen reduction activity, J Am Chem Soc 139 (35) (2017) 12133-12136 [20] Y.Q. Qiao, Q.J. Sun, O. Sha, X.Y. Zhang, Y.F. Tang, T. de Shen, L.X. Kong, W.M. Gao, Synthesis of Mn3O4 nano-materials via CTAB/SDS vesicle templating for high performance supercapacitors, Mater. Lett. 210 (2018) 128-132 [21] A.K.M.A. Ullah, A.K.M.F. Kibria, M. Akter, M.N.I. Khan, M.A. Maksud, R.A. Jahan, S.H. Firoz, Synthesis of Mn3O4 nanoparticles via a facile gel formation route and study of their phase and structural transformation with distinct surface morphology upon heat treatment, Journal of Saudi Chemical Society 21 (7) (2017) 830-836 [22] D. Lan, M. Qin, R. Yang, H. Wu, Z. Jia, K. Kou, G. Wu, Y. Fan, Q. Fu, F. Zhang, Synthesis, characterization and microwave transparent properties of Mn3O4 microspheres, Journal of Materials Science:Materials in Electronics 30 (9) (2019) 8771-8776 [23] Y. Kong, R. Jiao, H. Li, S. Xu, C. Cui, S. Zeng, L. Wang, Enhanced lithium storage performance of binary cooperative complementary CuO-Mn3O4 nanocomposites directly synthesized by hydrothermally controlled method, Journal of Alloys and Compounds 843 (2020) 156005 [24] C. Wang, X.D. Zhu, P.J. Zuo, Novel confinement of Mn3O4 nanoparticles on two-dimensional carbide enabling high-performance electrochemical synthesis of ammonia under ambient conditions, Chem. Eng. J. 396 (2020) 125163 [25] J. González-Prior, R. López-Fonseca, J.I. Gutiérrez-Ortiz, B. de Rivas, Oxidation of 1, 2-dichloroethane over nanocube-shaped Co3O4 catalysts, Appl. Catal. B:Environ. 199 (2016) 384-393 [26] M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure and Applied Chemistry 87 (9-10) (2015) 1051-1069 [27] Y. Lyu, C.T. Li, X.Y. Du, Y.C. Zhu, Y.D. Zhang, S.H. Li, Catalytic oxidation of toluene over MnO2 catalysts with different Mn (II) precursors and the study of reaction pathway, Fuel 262 (2020) 116610 [28] G. Zhu, J. Zhu, W. Jiang, Z. Zhang, J. Wang, Y. Zhu, Q. Zhang, Q., Surface oxygen vacancy induced α-MnO2 nanofiber for highly efficient ozone elimination, Appl. Catal. B:Environ. 209 (2017) 729-737. [29] N. Huang, Z.P. Qu, C. Dong, Y. Qin, X.X. Duan, Superior performance of α@β-MnO2 for the toluene oxidation:Active interface and oxygen vacancy, Appl. Catal. A:Gen. 560 (2018) 195-205 [30] T.Y. Ma, Y. Zheng, S. Dai, M. Jaroniec, S.Z. Qiao, Mesoporous MnCo2O4 with abundant oxygen vacancy defects as high-performance oxygen reduction catalysts, J. Mater. Chem. A 2 (23) (2014) 8676-8682 [31] H.G. Yang, H.X. Dai, J.G. Deng, S.H. Xie, W. Han, W. Tan, Y. Jiang, C.T. Au, Porous cube-aggregated Co3O4 microsphere-supported gold nanoparticles for oxidation of carbon monoxide and toluene, ChemSusChem 7 (6) (2014) 1745-1754 [32] X. Feng, J. Guo, X. Wen, M. Xu, Y. Chu, S. Yuan, Enhancing performance of Co/CeO2 catalyst by Sr doping for catalytic combustion of toluene, Applied Surface Science 445 (2018) 145-153 [33] X. Chen, X. Chen, S.C. Cai, E.Q. Yu, J. Chen, H.P. Jia, MnOx/Cr2O3 composites prepared by pyrolysis of Cr-MOF precursors containing in situ assembly of MnOx as high stable catalyst for toluene oxidation, Appl. Surf. Sci. 475 (2019) 312-324 [34] L. Li, J. Luo, Y. Liu, F. Jing, D. Su, W. Chu, Self-propagated flaming synthesis of highly active layered CuO-delta-MnO2 hybrid composites for catalytic total oxidation of toluene pollutant, ACS Appl Mater Interfaces 9 (26) (2017) 21798-21808 [35] Z.P. Qu, K. Gao, Q. Fu, Y. Qin, Low-temperature catalytic oxidation of toluene over nanocrystal-like Mn-Co oxides prepared by two-step hydrothermal method, Catal. Commun. 52 (2014) 31-35 [36] J.G. Deng, S.N. He, S.H. Xie, H.G. Yang, Y.X. Liu, G.S. Guo, H.X. Dai, Ultralow loading of silver nanoparticles on Mn2O3 nanowires derived with molten salts:a high-efficiency catalyst for the oxidative removal of toluene, Environ Sci Technol 49 (18) (2015) 11089-11095 [37] Q. Yang, D. Wang, C. Wang, K. Li, Y. Peng, J. Li, Promotion effect of Ga-Co spinel derived from layered double hydroxides for toluene oxidation, ChemCatChem 10 (21) (2018) 4838-4843 [38] W. Tang, X. Wu, D. Li, Z. Wang, G. Liu, H. Liu, Y. Chen, Oxalate route for promoting activity of manganese oxide catalysts in total VOCs' oxidation:effect of calcination temperature and preparation method, J. Mater. Chem. A 2 (8) (2014) 2544-2554 [39] H.R. Barai, N.S. Lopa, F. Ahmed, N.A. Khan, S.A. Ansari, S.W. Joo, M.M. Rahman, Synthesis of Cu-doped Mn3O4@Mn-doped CuO nanostructured electrode materials by a solution process for high-performance electrochemical pseudocapacitors, ACS Omega 5 (35) (2020) 22356-22366 [40] X. Tang, Y. Li, J. Chen, Y. Xu, W. Shen, Synthesis, characterization, and catalytic application of titanium-cryptomelane nanorods/fibers, Microporous and Mesoporous Materials 103 (1-3) (2007) 250-256 [41] J.B. Jia, P.Y. Zhang, L. Chen, Catalytic decomposition of gaseous ozone over manganese dioxides with different crystal structures, Appl. Catal. B:Environ. 189 (2016) 210-218 [42] J.R. Niu, H.B. Liu, Y.Y. Zhang, X. Wang, J. Han, Z.H. Yue, E.H. Duan, NiCo2O4 spinel for efficient toluene oxidation:The effect of crystal plane and solvent, Chemosphere 259 (2020) 127427 [43] X.F. Tang, J.H. Li, J.M. Hao, Significant enhancement of catalytic activities of manganese oxide octahedral molecular sieve by marginal amount of doping vanadium, Catal. Commun. 11 (10) (2010) 871-875 [44] Z.A. Su, W.H. Yang, C.Z. Wang, S.C. Xiong, X.Z. Cao, Y. Peng, W.Z. Si, Y.B. Weng, M. Xue, J.H. Li, Roles of oxygen vacancies in the bulk and surface of CeO2 for toluene catalytic combustion, Environ Sci Technol 54 (19) (2020) 12684-12692 [45] M. Piumetti, D. Fino, N. Russo, Mesoporous manganese oxides prepared by solution combustion synthesis as catalysts for the total oxidation of VOCs, Appl. Catal. B:Environ. 163 (2015) 277-287 [46] B. Puértolas, A. Smith, I. Vázquez, A. Dejoz, A. Moragues, T. Garcia, B. Solsona, The different catalytic behaviour in the propane total oxidation of cobalt and manganese oxides prepared by a wet combustion procedure, Chem. Eng. J. 229 (2013) 547-558 [47] Guo M, Li K, Liu L, Zhang H, Guo W, Hu X, Meng X, Jia J, Sun T, Manganese-based multi-oxide derived from spent ternary lithium-ions batteries as high-efficient catalyst for VOCs oxidation, J Hazard Mater 380 (2019) 120905 [48] Y. Liu, Y. Liu, Y. Guo, J. Xu, X. Xu, X. Fang, J. Liu, W. Chen, H. Arandiyan, X. Wang, Tuning SnO2 surface area for catalytic toluene deep oxidation:On the inherent factors determining the reactivity, Industrial & Engineering Chemistry Research 57 (42) (2018) 14052-14063 [49] G. Cheng, L. Yu, B.B. He, M. Sun, B.T. Zhang, W.J. Ye, B. Lan, Catalytic combustion of dimethyl ether over α-MnO2 nanostructures with different morphologies, Appl. Surf. Sci. 409 (2017) 223-231 |
[1] | Shuo Li, Jianlin Cao, Xiang Feng, Yupeng Du, De Chen, Chaohe Yang, Wenhua Wang, Wanzhong Ren. Insights into the confinement effect on isobutane alkylation with C4 olefin catalyzed by zeolite catalyst: A combined theoretical and experimental study [J]. Chinese Journal of Chemical Engineering, 2022, 47(7): 174-184. |
[2] | Zhouxin Chang, Feng Yu, Zhisong Liu, Zijun Wang, Jiangbing Li, Bin Dai, Jinli Zhang. Ni-Al mixed metal oxide with rich oxygen vacancies: CO methanation performance and density functional theory study [J]. Chinese Journal of Chemical Engineering, 2022, 46(6): 73-83. |
[3] | Wenjian Zhu, Xuhua Shen, Rui Ou, Manoj Murugesan, Aihua Yuan, Jianfeng Liu, Xiaocai Hu, Zhen Yang, Ming Shen, Fu Yang. Superhigh selective capture of volatile organic compounds exploiting cigarette butts-derived engineering carbonaceous adsorbent [J]. Chinese Journal of Chemical Engineering, 2022, 46(6): 194-206. |
[4] | Weizhou Jiao, Xingyue Wei, Shengjuan Shao, Youzhi Liu. Catalytic decomposition and mass transfer of aqueous ozone promoted by Fe-Mn-Cu/γ-Al2O3 in a rotating packed bed [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 133-142. |
[5] | Fu Yang, Ruyi Wang, Shijian Zhou, Xuyu Wang, Yan Kong, Shuying Gao. Mesopore-encaged V-Mn oxides: Progressive insertion approach triggering reconstructed active sites to enhance catalytic oxidative desulfuration [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 182-193. |
[6] | Feng Guo, Zhihao Chen, Xiliu Huang, Longwen Cao, Xiaofang Cheng, Weilong Shi, Lizhuang Chen. Ternary Ni2P/Bi2MoO6/g-C3N4 composite with Z-scheme electron transfer path for enhanced removal broad-spectrum antibiotics by the synergistic effect of adsorption and photocatalysis [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 157-168. |
[7] | Linlan Wu, Zhengxin Jiao, Suhang Xun, Minqiang He, Lei Fan, Chao Wang, Wenshu Yang, Wenshuai Zhu, Huaming Li. Photocatalytic oxidative of Keggin-type polyoxometalate ionic liquid for enhanced extractive desulfurization in binary deep eutectic solvents [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 205-211. |
[8] | Mingxia Tian, Aili Wang, Hengbo Yin. Evolution of copper nanowires through coalescing of copper nanoparticles induced by aliphatic amines and their electrical conductivities in polyester films [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 284-291. |
[9] | Vesna Krsti?. Theoretical and experimental assessment of a novel method to establish the complete measurement range of the calorimeter and its limit of detection and quantification [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 466-473. |
[10] | Zhen Lu, Jie He, Bogeng Guo, Yulai Zhao, Jingyu Cai, Longqiang Xiao, Linxi Hou. Efficient homogenous catalysis of CO2 to generate cyclic carbonates by heterogenous and recyclable polypyrazoles [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 110-115. |
[11] | Xiangzhao Hu, Junjie Sun, Wanzhen Zheng, Sixing Zheng, Yu Xie, Xiang Gao, Bin Yang, Zhongjian Li, Lecheng Lei, Yang Hou. Layered bismuth oxide/bismuth sulfide supported on carrageenan derived carbon for efficient carbon dioxide electroreduction to formate [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 116-123. |
[12] | Di Gao, Yibo Zhi, Liyuan Cao, Liang Zhao, Jinsen Gao, Chunming Xu, Mingzhi Ma, Pengfei Hao. Influence of zinc state on the catalyst properties of Zn/HZSM-5 zeolite in 1-hexene aromatization and cyclohexane dehydrogenation [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 124-134. |
[13] | Xin Li, Song Hong, Leiduan Hao, Zhenyu Sun. Cadmium-based metal-organic frameworks for high-performance electrochemical CO2 reduction to CO over wide potential range [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 143-151. |
[14] | Yanliang Zhou, Qianjin Sai, Zhenni Tan, Congying Wang, Xiuyun Wang, Bingyu Lin, Jun Ni, Jianxin Lin, Lilong Jiang. Highly efficient subnanometer Ru-based catalyst for ammonia synthesis via an associative mechanism [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 177-184. |
[15] | Xuanyi Jia, Xiaomin Hu, Qiao Wang, Baiquan Chen, Xingyue Xie, Lihong Huang. Auto-thermal reforming of acetic acid for hydrogen production by ZnxNiyCrOm±δ catalysts: Effect of Cr promoted Ni-Zn intermetallic compound [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 216-221. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||