Chinese Journal of Chemical Engineering ›› 2022, Vol. 44 ›› Issue (4): 124-130.DOI: 10.1016/j.cjche.2021.06.017
Previous Articles Next Articles
Yufei Yang1, Jieyi Ma1, Junyan Wu1, Weixia Zhu1, Yadong Zhang1,2
Received:
2020-09-17
Revised:
2021-05-12
Online:
2022-06-18
Published:
2022-04-28
Contact:
Yadong Zhang,E-mail:zhangyadong2016@163.com
Supported by:
Yufei Yang1, Jieyi Ma1, Junyan Wu1, Weixia Zhu1, Yadong Zhang1,2
通讯作者:
Yadong Zhang,E-mail:zhangyadong2016@163.com
基金资助:
Yufei Yang, Jieyi Ma, Junyan Wu, Weixia Zhu, Yadong Zhang. Experimental and theoretical study on N-hydroxyphthalimide and its derivatives catalyzed aerobic oxidation of cyclohexylbenzene[J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 124-130.
Yufei Yang, Jieyi Ma, Junyan Wu, Weixia Zhu, Yadong Zhang. Experimental and theoretical study on N-hydroxyphthalimide and its derivatives catalyzed aerobic oxidation of cyclohexylbenzene[J]. 中国化学工程学报, 2022, 44(4): 124-130.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2021.06.017
[1] H. Younesi-Kordkheili, Ionic liquid modified lignin-phenol-glyoxal resin:a green alternative resin for production of particleboards, J. Adhes. 95 (2019) 1075-1087 [2] J.B.J.H. Van Duuren, P.J. De Wild, S. Starck, C. Bradtmoller, M. Selzer, K. Mehlmann, R. Schneider, M. Kohlstedt, I. Pobletecastro, J. Stolzenberger, Limited life cycle and cost assessment for the bioconversion of lignin-derived aromatics into adipic acid, Biotechnol. Bioeng. 117(2020) 1381-1393 [3] H.Y. Fang, Y.M. Huei, C.C. Pyeng, Autooxidation of cumene catalyzed by transition metal compounds on polymeric supports, J. Mol. Catal. A:Chem. 105 (1996) 137-144 [4] L. Melone, C. Gambarotti, S. Prosperini, N. Pastori, F. Recupero, C. Punta, Hydroperoxidation of Tertiary Alkylaromatics Catalyzed By N-Hydroxyphthalimide and Aldehydes under Mild Conditions, Adv. Synth. Catal. 353 (2011) 147-154 [5] B. Orlinska, J. Zawadiak, Aerobic oxidation of isopropylaromatic hydrocarbons to hydroperoxides catalyzed by N-hydroxyphthalimide, React. Kinet., Mech. Catal. 110 (2013) 15-30 [6] S. Liao, F. Peng, H. Yu, H. Wang, Carbon nanotubes as catalyst for the aerobic oxidation of cumene to cumene hydroperoxide, Appl. Catal. 478 (2014) 1-8 [7] M. Yang, G. Qiu, C. Huang, X. Han, Y. Li, B. Chen, Selective Oxidation of Cumene to the Equivalent Amount of Dimethylbenzyl Alcohol and Cumene Hydroperoxide, Ind. Eng. Chem. Res. 58 (2019) 19785-19793 [8] J. Zhang, Y. Lu, K. Wang, G. Luo, Novel One-Step Synthesis Process from Cyclohexanone to Caprolactam in Trifluoroacetic Acid, Ind. Eng. Chem. Res. 52 (2013) 6377-6381 [9] E. Jeong, M.B. Ansari, S. Park, Aerobic Baeyer-Villiger Oxidation of Cyclic Ketones over Metalloporphyrins Bridged Periodic Mesoporous Organosilica, ACS Catal.1 (2011) 855-863 [10] X. Zhou, H. Ji, Q. Yuan, Baeyer-Villiger oxidation of ketones catalyzed by iron(III) meso-tetraphenylporphyrin chloride in the presence of molecular oxygen, J. Porphyr Phthalocya. 12 (2008) 94-100 [11] J. Zang, Y. Ding, Y. Pei, J. Liu, R. Lin, L. Yan, T. Liu, Y. Lu, Efficient Co3O4/SiO2 catalyst for the Baeyer-Villiger oxidation of cyclohexanone, React. Kinet., Mech. Catal. 112 (2014) 159-171 [12] A. Sinhamahapatra, A. Sinha, S.K. Pahari, N. Sutradhar, H.C. Bajaj, A.B. Panda, Room temperature Baeyer-Villiger oxidation using molecular oxygen over mesoporous zirconium phosphate, Catal. Sci. Technol. 2 (2012) 2375-2382 [13] S. Benadji, T. Mazari, L. Dermeche, N. Salhi, E. Cadot, C. Rabia, Clean Alternative for Adipic Acid Synthesis Via Liquid-Phase Oxidation of Cyclohexanone and Cyclohexanol Over H3-2xCoxPMo12O40 Catalysts with Hydrogen Peroxide, Catal. Lett. 143 (2013) 749-755 [14] I.W.C.E. Arends, M. Sasidharan, A. Kühnle, M. Duda, C. Jost, R.A. Sheldon, Selective catalytic oxidation of cyclohexylbenzene to cyclohexylbenzene-1-hydroperoxide:a coproduct-free route to phenol, Tetrahedron. 58 (2002) 9055-9061 [15] W. Sun, S. Zhang, J. Qiu, Z. Xu, L. Zhao, Modeling the Liquid Phase Autoxidation of Cyclohexylbenzene to Hydroperoxide, Chem. Eng. Res. Des. 124 (2017) 202-210 [16] Y. Ishii, S. Sakaguchi, T. Iwahama, Innovation of Hydrocarbon Oxidation with Molecular Oxygen and Related Reactions, Adv. Synth. Catal. 343 (2001) 393-427 [17] Y. Ishii, S. Sakaguchi, Recent progress in aerobic oxidation of hydrocarbons by N-hydroxyimides, Catal. Today. 117 (2006) 105-113 [18] S. Coseri, Phthalimide-N-oxyl (PINO) Radical, a Powerful Catalytic Agent:Its Generation and Versatility Towards Various Organic Substrates, Catal. Rev. Sci. Eng. 51 (2009) 218-292 [19] L. Melone, C. Punta, Metal-free aerobic oxidations mediated by N-hydroxyphthalimide. A concise review, Beilstein J. Org. Chem. 9 (2013) 1296-1310 [20] Y. Aoki, S. Sakaguchi, Y. Ishii, One-pot synthesis of phenol and cyclohexanone from cyclohexylbenzene catalyzed by N-hydroxyphthalimide (NHPI), Tetrahedron. 61 (2005) 5219-5222 [21] R.A. Sheldon, I.W.C.E. Arends, Catalytic oxidations mediated by metal ions and nitroxyl radicals, J. Mol. Catal. A:Chem. 251 (2006) 200-214 [22] Z. Tan, J. Zhu, W. Yang, Conjugated copper(II) porphyrin polymer and N-hydroxyphthalimide as effective catalysts for selective oxidation of cyclohexylbenzene, Catal. Commun. 94 (2017) 60-64 [23] P. Zhang, C. Wang, Z. Chen, H. Li, Acetylacetone-metal catalyst modified by pyridinium salt group applied to the NHPI-catalyzed oxidation of cholesteryl acetate, Catal. Sci. Technol. 1 (2011) 1133-1137 [24] C. Miao, H. Zhao, Q. Zhao, C. Xia, W. Sun, NHPI and ferric nitrate:a mild and selective system for aerobic oxidation of benzylic methylenes, Catal. Sci. Technol. 6 (2016) 1378-1383 [25] E.B. Clatworthy, J.L. Picone-Murray, A.K.L. Yuen, R.T. Maschmeyer, A.F. Masters, T. Maschmeyer, Investigating homogeneous Co/Br-/H2O2 catalysed oxidation of lignin model compounds in acetic acid, Catal. Sci. Technol. 9 (2019) 384-397 [26] R. Amorati, M. Lucarini, V. Mugnaini, G.F. Pedulli, F. Minisci, F. Recupero, F. Fontana, P. Astolfi, L. Greci, Hydroxylamines as Oxidation Catalysts:Thermochemical and Kinetic Studies, J. Org. Chem. 68 (2003) 1747-1754 [27] M. Nechab, C. Einhorn, J. Einhorn, New aerobic oxidation of benzylic compounds:efficient catalysis by N-hydroxy-3,4,5,6-tetraphenylphthalimide (NHTPPI)/CuCl under mild conditions and low catalyst loading, Chem Commun. (2004) 1500-1501 [28] X. Baucherel, I.W.C.E. Arends, S. Ellwood, R.A. Sheldon, A New Catalytic System for the Selective Aerobic Oxidation of Large Ring Cycloalkanes to Ketones, Org. Process Res. Dev. 7 (2003) 426-428 [29] M. Zhou, X. Li, L. Bao, X. Yuan, H. Luo, A New Method for Immobilization of NDHPI on SBA-15 Carrier Used as Catalyst for Selective Oxidation of Toluene, Catal. Lett. 146 (2016) 383-390 [30] O. Pliekhov, O. Pliekhova, U.L. Stangar, N.Z. Logar, The Co-MOF-74 modified with N,N'-Dihydroxypyromellitimide for selective, solvent free aerobic oxidation of toluene, Catal. Commun. 110 (2018) 88-92 [31] Q. Zhao, K. Chen, W. Zhang, J. Yao, H. Li, Efficient metal-free oxidation of ethylbenzene with molecular oxygen utilizing the synergistic combination of NHPI analogues, J. Mol. Catal. A:Chem. 402 (2015) 79-82 [32] K. Kasperczyk, B. Orlinska, J. Zawadiak, Aerobic oxidation of cumene catalysed by 4-alkyloxycarbonyl-N-hydroxyphthalimide, Cent. Eur. J. Chem. 12 (2014) 1176-1182 [33] N. Sawatari, T. Yokota, S. Sakaguchi, Y. Ishii, Alkane oxidation with air catalyzed by lipophilic N-hydroxyphthalimides without any solvent, J. Org. Chem. 66 (2001) 7889-7891 [34] B. Jiang, B. Xu, M. Wang, Z. Li, D. Liu, S. Zhang, Cobalt(II)/N,N',N''-Trihydroxyisocyanuric Acid Catalyzed Aerobic Oxidative Esterification and Amidation of Aldehydes, Asian J. Org. Chem. 7 (2018) 977-983 [35] E.J. Horn, B.R. Rosen, Y. Chen, J. Tang, K. Chen, M.D. Eastgate, P.S. Baran, Scalable and sustainable electrochemical allylic C-H oxidation, Nature. 533 (2016) 77-81 [36] M.A. Buckingham, W. Cunningham, S.D. Bull, A. Buchard, A. Folli, D.M. Murphy, F. Marken, Electrochemically Driven C-H Hydrogen Abstraction Processes with the Tetrachloro-Phthalimido-N-Oxyl (Cl4PINO) Catalyst, Electroanalysis. 30 (2018) 1706-1713 [37] Q. Zhang, C. Chen, H. Ma, H. Miao, W. Zhang, Z. Sun, J. Xu, Efficient metal-free aerobic oxidation of aromatic hydrocarbons utilizing aryl-tetrahalogenated N-hydroxyphthalimides and 1,4-diamino-2,3-dichloroanthraquinone, J. Chem. Technol. Biotechnol. 83 (2008) 1364-1369 [38] B. Delley, From molecules to solids with the DMol3 approach, J. Chem. Phys. 113 (2000) 7756-7764 [39] B. Delley, An all-electron numerical method for solving the local density functional for polyatomic molecules, J. Chem. Phys. 92 (1990) 508-517 [40] C. Chang, M. Pelissier, P. Durand, Regular Two-Component Pauli-Like Effective Hamiltonians in Dirac Theory, Phys. Scr. 34 (1986) 394-404 [41] E. Van Lenthe, A.W. Ehlers, E.J. Baerends, Geometry optimizations in the zero order regular approximation for relativistic effects, J. Chem. Phys. 110 (1999) 8943-8953 [42] A. Klamt, G.J. Schueuermann, COSMO:A new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient, J. Chem. Soc. Perkin Trans. 2 (1993) 799-805 [43] Klamt, Andreas, Conductor-like Screening Model for Real Solvents:A New Approach to the Quantitative Calculation of Solvation Phenomena, J. Phys. Chem. 99 (1995) 2224-2235 [44] I. Hermans, L. Vereecken, P.A. Jacobs, J. Peeters, Mechanism of the catalytic oxidation of hydrocarbons by N-hydroxyphthalimide:a theoretical study, Chem. Commun. (9) (2004) 1140-1141 [45] G.D. Silva, J.W. Bozzelli, Theoretical Study of the Oxidation Catalyst N-Hydroxyphthalimide (NHPI):Thermochemical Properties, Internal Rotor Potential, and Gas- and Liquid-Phase Bond Dissociation Energies, J. Phys. Chem. C. 111 (2007) 5760-5765 [46] Y. Cai, N. Koshino, B. Saha, J.H. Espenson, Kinetics of Self-Decomposition and Hydrogen Atom Transfer Reactions of Substituted Phthalimide N-Oxyl Radicals in Acetic Acid, J. Org. Chem. 70 (2005) 238-243 [47] Y. Sun, W. Zhang, X. Hu, H. Li, Correlation Analysis of the Substituent Electronic Effects on the Allylic H-Abstraction in Cyclohexene by Phthalimide-N-oxyl Radicals:a DFT Study, J. Org. Chem. B. 114 (2010) 4862-4869 [48] K. Chen, L. Jia, R. Dao, J. Yao, C. Wang, Z. Chen, H. Li, Theoretical Studies on Muti-Hydroxyimides as Highly Efficient Catalysts for Aerobic Oxidation, Chemphyschem. 14 (2013) 179-184 [49] H. Du, Q. Shen, L. Feng, L. Fei, X. Zhou, Z. Li, K. Chen, K. Jiang, Structure-reactivity relationships of N-hydroxysaccharin analogues as organocatalysts for aerobic oxidation Comput. Theor. Chem. 1115 (2017) 223-228 |
[1] | Fu Yang, Ruyi Wang, Shijian Zhou, Xuyu Wang, Yan Kong, Shuying Gao. Mesopore-encaged V-Mn oxides: Progressive insertion approach triggering reconstructed active sites to enhance catalytic oxidative desulfuration [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 182-193. |
[2] | Peiwei Han, Chunhua Xu, Yamin Wang, Chenglin Sun, Huangzhao Wei, Haibo Jin, Ying Zhao, Lei Ma. The high catalytic activity and strong stability of 3%Fe/AC catalysts for catalytic wet peroxide oxidation of m-cresol: The role of surface functional groups and FeOx particles [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 105-114. |
[3] | Wei Zhou, Xiaoxiao Meng, Liang Xie, Junfeng Li, Yani Ding, Yanlin Su, Jihui Gao, Guangbo Zhao. Simultaneous utilization of electro-generated O2 and H2 for H2O2 production: An upgrade of the Pd-catalytic electro-Fenton process for pollutants degradation [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 363-368. |
[4] | Ling Xu, Ji Li, Wenbin Zeng, Kai Liu, Yibing Ma, Liping Fang, Chenlu Shi. Surfactant-assisted removal of 2,4-dichlorophenol from soil by zero-valent Fe/Cu activated persulfate [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 447-455. |
[5] | Muhammad Faizan, Yingwei Li, Ruirui Zhang, Xingsheng Wang, Piao Song, Ruixia Liu. Progress of vanadium phosphorous oxide catalyst for n-butane selective oxidation [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 297-315. |
[6] | Jian Jian, Dexing Yang, Peng Liu, Kuiyi You, Weijie Sun, Hu Zhou, Zhengqiu Yuan, Qiuhong Ai, Hean Luo. Solvent-free partial oxidation of cyclohexane to KA oil over hydrotalcite-derived Cu-MgAlO mixed metal oxides [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 269-276. |
[7] | Vitória M. Almeida, Carla A. Orge, M. Fernando R. Pereira, O. Salomé G.P. Soares. O3 based advanced oxidation for ibuprofen degradation [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 277-284. |
[8] | Yanqiang Shi, Yuetong Xia, Guangtong Xu, Langyou Wen, Guohua Gao, Baoning Zong. Hydrogen peroxide and applications in green hydrocarbon nitridation and oxidation [J]. Chinese Journal of Chemical Engineering, 2022, 41(1): 145-161. |
[9] | Yingzhen Zhang, Yonggang Lei, Tianxue Zhu, Zengxing Li, Shen Xu, Jianying Huang, Xiao Li, Weilong Cai, Yuekun Lai, Xiaojun Bao. Surface plasmon resonance metal-coupled biomass carbon modified TiO2 nanorods for photoelectrochemical water splitting [J]. Chinese Journal of Chemical Engineering, 2022, 41(1): 403-411. |
[10] | Mingming Guo, Lizhong Liu, Jia-nan Gu, Hongbo Zhang, Xin Min, Jianxing Liang, Jinping Jia, Kan Li, Tonghua Sun. Catalytic performance improvement of volatile organic compounds oxidation over MnOx and GdMnO3 composite oxides from spent lithium-ion batteries: Effect of acid treatment [J]. Chinese Journal of Chemical Engineering, 2021, 34(6): 278-288. |
[11] | Zhen Wei, Xuanqi Kang, Shangyuan Xu, Xiaokang Zhou, Bo Jia, Qing Feng. Electrochemical oxidation of Rhodamine B with cerium and sodium dodecyl benzene sulfonate co-modified Ti/PbO2 electrodes: Preparation, characterization, optimization, application [J]. Chinese Journal of Chemical Engineering, 2021, 32(4): 191-202. |
[12] | Zhihao Yi, Jie Sun, Jigang Li, Tian Zhou, Shouping Wei, Hongjia Xie, Yulin Yang. High efficient removal of HCN over porous CuO/CeO2 micro-nano spheres at lower temperature range [J]. Chinese Journal of Chemical Engineering, 2021, 38(10): 155-164. |
[13] | Rongrui Deng, Hao Xiao, Zhaoming Xie, Zuohua Liu, Qiang Yu, Geng Chen, Changyuan Tao. A novel method for extracting vanadium by low temperature sodium roasting from converter vanadium slag [J]. Chinese Journal of Chemical Engineering, 2020, 28(8): 2208-2213. |
[14] | Rongzong Li, Zhaoyang Li, Qian Jiang, Zhaoxiang Zhong, Ming Zhou, Weihong Xing. Acid precipitation coupled membrane-dispersion advanced oxidation process (MAOP) to treat crystallization mother liquor of pulp wastewater [J]. Chinese Journal of Chemical Engineering, 2020, 28(7): 1911-1917. |
[15] | Lingtao Kong, Shengtao Xu, Xue Liu, Chaofan Liu, Dandan Zhang, Ling Zhao. Effects of iron precursors on the structure and catalytic performance of iron molybdate prepared by mechanochemical route for methanol to formaldehyde [J]. Chinese Journal of Chemical Engineering, 2020, 28(6): 1603-1611. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||